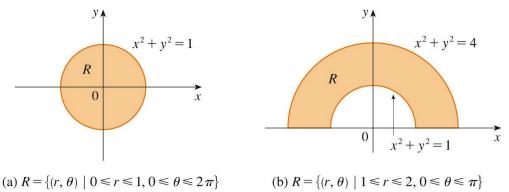
Lesson 46. Double Integrals in Polar Coordinates

0 Warm up

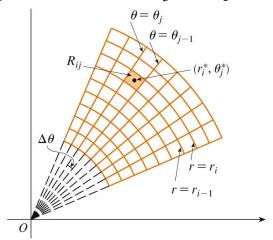
Example 1. Find a polar equation for the curve represented by the Cartesian equation $4y^2 = x$.

1 Changing to polar coordinates in a double integral

- Idea:
 - Some regions are hard to express in terms of rectangular coordinates, but easily described using polar coordinates



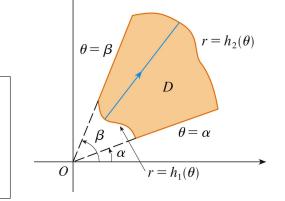
• How do we integrate in polar coordinates? Divide regions into polar subrectangles



• If *D* is a polar region of the form

$$D = \left\{ (r, \theta) \, | \, \alpha \leq \theta \leq \beta, \, h_1(\theta) \leq r \leq h_2(\theta) \right\}$$

then



- Substitute $x = r \cos \theta$ and $y = r \sin \theta$ into f(x, y)
- Replace dA with $r dr d\theta$
- Don't forget the additional factor *r*!

Example 2. Evaluate $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \sin(x^2 + y^2) dy dx$ by converting to polar coordinates.

Example 3. Evaluate $\iint_D (x^2 + y^2) dA$, where *D* is the region in the upper half-plane bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

Example 4. Find the volume of the solid bounded by the plane z = 0 and the paraboloid $z = 1 - x^2 - y^2$.

Example 5. Set up a double integral in polar coordinates that is equal to the volume of the solid that lies underneath the paraboloid $z = x^2 + y^2$, above the *xy*-plane, and inside the cylinder $x^2 + y^2 = 2x$.

