SM223 – Calculus III with Optimization Asst. Prof. Nelson Uhan

Lesson 49. Triple Integrals, cont.

0 Warm up

Example 1. Express $\iiint_E y\sqrt{z} \, dV$ as an iterated integral, where *E* is the tetrahedron enclosed by the coordinate planes and the plane 2x + y + z = 4.

1 Types of 3D regions of integration

• Type A 3D region: between two continuous functions of *x* and *y*

• Type B 3D region: between two continuous functions of *y* and *z*

$$\iiint_E f(x, y, z) \, dV$$

=
$$\iint_D \left[\int_{u_1(y, z)}^{u_2(y, z)} f(x, y, z) \, dx \right] dA$$

• **Type C 3D region:** between two continuous functions of *x* and *z*

$$\iiint_{E} f(x, y, z) dV$$
$$= \iint_{D} \left[\int_{u_{1}(x, z)}^{u_{2}(x, z)} f(x, y, z) dy \right] dA$$

2 Finding volume

3 Examples and Problems

Example 2. Express $\iiint_E y \sqrt{z} \, dV$ as an iterated integral, where *E* is the tetrahedron enclosed by the coordinate planes and the plane 2x + y + z = 4. Consider *E* as a type B and a type C region.

Example 3. Evaluate $\iiint_E \sqrt{x^2 + z^2} \, dV$ where *E* is the region bounded by the paraboloid $y = x^2 + z^2$ and the plane y = 4.