<u>Syllabus</u>

Mathematics Department United States Naval Academy SM223 Calculus III with Optimization Fall 2017 Text: <u>Calculus</u> James Stewart 8th edition

The underlined problems do not appear in WEB Assign.

1. Three dimensional space	12.1 p 796 #9, 12, <u>27</u> , <u>30</u> , 32, 35
2. Vectors	12.2 p .805 # <u>6,</u> <u>22</u> , 24, 32, 34, 37
3. Dot Product	12.3 p. 812 #8, 10, 11, <u>18</u> , <u>20</u> , 23
4. Dot Product	12.3 p.813 #25, 27, 39, <u>42</u> , 44, 55
5. Cross Product	12.4 p. 821 # <u>2</u> , <u>5</u> , 13, 14, 19, 27
6. Lines and Planes	12.5 p.831 #2, 4, 6, 7, 10, 13
7. Lines and Planes	12.5 p.831 #16, 19, <u>23</u> , 26, 27, <u>30</u>
8. Lines and Planes	12.5 p. 831 # 31, 35, 41, 45, <u>48</u> , <u>67</u>
9. Quadric Surfaces	12.6 p. 839 # 1, 5, 8, 11, <u>14</u> , <u>17</u>
10. Quadric Surfaces	12.6 p.840 # 21-28
11. Review	
12. Hour Exam	
13. Curves	13.1 p.854 #9, 12, 13, <u>14, 16, 28</u>
14. Curves	13.1 p.854 #21, <u>22</u> , <u>23</u> , <u>24, </u> 25, <u>26</u>
15. Derivatives	13.2 p.860 #4, 10, <u>11</u> , <u>24</u> , 28, 34
16. Arc Length	13.3 p.868 #1, 4, <u>7</u> , <u>9</u>
17. Motion	13.4 p. 878 # 3, 5, 9, 13, <u>15</u> , <u>16</u>
18. Motion	13.4 p. 878 # 19, 23, 25, 26
19. Motion	13.4 Hand out Problems
20. Review	
21. Hour Exam	
22. Functions of Many	

	Variables	14.1 p. 899 # 1, 2, 3, 7, <u>8</u>
23.	Functions of Many	
	Variables	14.1 p. 890 #24 <mark>,</mark> 25, <u>26</u> , 28, 32, <u>34</u>
24.	Functions of Many	
	Variables	14.1 p.901 # 41, 44, 45, <u>46</u> , <u>48</u> , 68, <u>69</u>
25.	Functions of Many	
	Variables	14.1 p. 902 # 61-66
26.	Partial Derivatives	14.3 p.923 #3, <u>4</u> , 5, 6, 7, 8, <u>86</u>
27.	Partial Derivatives	14.3 p.924 #9, 10, 11, 15, <u>18</u> , 20, 90
28.	Partial Derivatives	14.3 p. 924 # <u>22, 26, 32, 34, 35,</u> 42,
<u>9</u>	<u>4</u>	
29.	Partial Derivatives	14.3 p. 925 #53, <u>64</u> , <u>66</u> , <u>74</u> , <u>100</u>
30.	Tangent Planes	14.4 p. 934 # 1, <u>2, 4</u> , <u>5</u>
31.	Linear Approximation	n 14.4 p.935 # <u>19</u> , 21, 22, <u>24</u>
32.	Chain Rule	14.5 p.943 #1, <u>2</u> , <u>13, 14</u> , 35, <u>36</u>
33.	Chain Rule	14.5 p. 943 #3, <u>4</u> , 15, 37, 38
34.	Chain Rule	14.5 p. 943 #5, 6, 39, 40, <u>42</u>
35.	Gradients	14.6 p.956 #1, <u>2</u> , <u>3</u> , 7, 9, <u>10</u> , <u>30</u>
36.	Gradients	14.6 p. 957 #11, 13, 14, 15, <u>28</u> , 31
37.	Gradients	14.6 p. 957 #32, 33, <u>38</u> , 41, <u>42, 44</u>
38.	Review	
39.	Hour Exam	
40.	Max-Min	14.7 p.967 #3, <u>7</u> , <u>8</u> , <u>9</u> , 41, 45
41.	Max-Min	14.7 p. 968 # <u>4,</u> 12, <u>13</u> , 48, 50
42.	Lagrange Multipliers	14.8 p. 977 #3, 5, 31, 35
43.	Lagrange Multipliers	14.8 p.977 #7, 9, 38, 40
44.	Integration Rectangu	llar
	Regions	15.1 p.999 # <u>3</u> , 6, 15, 16, <u>17</u> , <u>18</u>
45.	Integration Rectangu	llar
	Regions	15.1 p 999 #7, <u>8</u> , 19, 21, 27, <u>28</u>
46.	Non-Rectangular Rec	gions 15,2 p. 1008 # <u>3</u> , 15, 19, 45, <u>46</u> , <u>47</u>

- 47. Non-Rectangular Regions 52
- 48. Polar Coordinates
- 49. Polar Coordinates
- 50. Applications
- 51. Application
- 52. Triple Integrals
- 53. Triple Integrals
- 54. Review
- 55. Hour Exam
- 56. Review
- 57. Review
- 58. Review
- 59. Review
- 60. Review

The final exam will consist of a multiple choice section and a long answer section. In lieu of a proof, the exam will have a problem in which a student will have to explain a concept in the student's own words.

Learning Goals and Objectives for Calculus III (SM223)

Upon successful completion of this course, students should be able to do the following:

- 1. Describe basic curves and space motion (including projectile motion) using vector functions and their derivatives and integrals
- 2. Draw and interpret level sets and graphs of a real valued function
- 3. Use partial derivatives, directional derivatives, and gradient vectors to describe the behavior of a real valued function.
- 4. Solve extreme value problems by finding and classifying critical points and by the method of Lagrange multipliers

15.2 p. 1008 #<u>9</u>, 18, <u>20</u>, <u>48</u>, 51,

- 15.3 p. 1014 #<u>5</u>, 7, 8, 9, <u>10</u>, 11
- 15.3 p. 1015 #12, 15, 29, <u>30</u>, <u>31</u>
- 15.4 p. 1024 #<u>3</u>, 7, 11, 13
 - 15.4 p. 1025 #27, <u>28</u>, 29
 - 15.5 p. 1037 #4, 9, <u>13</u>, <u>19</u>, <u>20</u>
 - 15.5 p. 1038 #<u>27</u>, <u>28</u>, <u>33</u>, <u>34</u>, <u>35</u>

- 5. Evaluate double and triple integrals in rectangular and polar coordinates and use integrals to find centers of mass and probabilities
- 6. Write well-organized, coherent solutions to applications problems