Syllabus

> Mathematics Department United States Naval Academy SM223

Calculus III with Optimization
Fall 2017
Text: Calculus James Stewart $8^{\text {th }}$ edition

The underlined problems do not appear in WEB Assign.

1. Three dimensional space 12.1 p 796 \#9, 12, $\underline{27}, \underline{30}, 32,35$
2. Vectors
12.2 p .805 \#흐, 22, 24, 32, 34, 37
3. Dot Product
12.3 p. 812 \#8, 10, 11, 18, 20, 23
4. Dot Product
12.3 p. 813 \#25, 27, 39, 42, 44, 55
5. Cross Product
12.4 p. 821 \# 2, $5,13,14,19,27$
6. Lines and Planes
7. Lines and Planes
8. Lines and Planes
9. Quadric Surfaces
10. Quadric Surfaces
12.5 p. 831 \#2, 4, 6, 7, 10, 13
12.5 p. 831 \#16, 19, 23, 26, 27, $\underline{30}$
12.5 p. 831 \# 31, $35,41,45, \underline{48}, \underline{67}$
12.6 p. 839 \# 1, 5, 8, 11, 14, 17
12.6 p. 840 \# 21-28
11. Review
12. Hour Exam
13. Curves
13.1 p. 854 \#9, 12, 13, 14, 16, $2 \underline{8}$
14. Curves
15. Derivatives
13.1 p. 854 \# $21, \underline{22}, \underline{23}, \underline{24}, 25, \underline{26}$
16. Arc Length
13.2 p. 860 \#4, 10, 11, 24, 28, 34
17. Motion
18. Motion
13.3 p. 868 \#1, 4, ㄱ, $\underline{9}$
19. Motion
13.4 p. 878 \# 3, 5, 9, 13, 15, 16
13.4 p. 878 \# 19, 23, 25, 26
20. Review
21. Hour Exam
22. Functions of Many
Variables
14.1 p. 899 \# 1, 2, 3, 7, 8
23. Functions of Many

Variables
14.1 p. 890 \#24, 25, $\underline{26}, 28,32, \underline{34}$
24. Functions of Many

Variables
14.1 p. 901 \# 41, 44, 45, 46, 48, 68, 69
25. Functions of Many Variables
14.1 p. 902 \# 61-66
26. Partial Derivatives
27. Partial Derivatives
14.3 p. 923 \#3, 4, 5, 6, 7, 8, 86
14.3 p. 924 \#9, 10, 11, 15, 18, 20, 90
14.3 p. 924 \# $22, \underline{26}, \underline{32}, \underline{34}, \underline{35}, 42$,
14.3 p. 925 \# $53, \underline{64}, \underline{66}, \underline{74}, \underline{100}$
30. Tangent Planes
14.4 p. 934 \# 1, $\underline{2}, \underline{4}, \underline{5}$
31. Linear Approximation
32. Chain Rule
33. Chain Rule
34. Chain Rule
14.4 p. 935 \# 19, 21, 22, 24
14.5 p. 943 \#1, $\underline{2}, \underline{13}, \underline{14}, 35, \underline{36}$
14.5 p. 943 \#3, 4, 15, 37, 38
14.5 p. 943 \#5, 6, 39, 40, 42
35. Gradients
36. Gradients
37. Gradients
14.6 p. 956 \#1, $\underline{2}, \underline{3}, 7,9, \underline{10}, \underline{30}$
14.6 p. 957 \#11, 13, 14, 15, 28, 31
14.6 p. 957 \# $32,33,38,41,42,44$
38. Review
39. Hour Exam
40. Max-Min
41. Max-Min
42. Lagrange Multipliers
14.7 p. 967 \#3, $\underline{7}, \underline{8}, \underline{9}, 41,45$
43. Lagrange Multipliers
14.7 p. 968 \#4, 12, 13, 48, 50
14.8 p. 977 \#3, 5, 31, 35
14.8 p. 977 \#7, 9, 38, 40
44. Integration Rectangular

Regions
45. Integration Rectangular Regions
15.1 р 999 \#7, $\underline{8}, 19,21,27, \underline{28}$
46. Non-Rectangular Regions 15,2 p. 1008 \# $\underline{3}, 15,19,45, \underline{46}, \underline{4}$
47. Non-Rectangular Regions 52
48. Polar Coordinates
49. Polar Coordinates
50. Applications
51. Application
52. Triple Integrals
53. Triple Integrals
54. Review
55. Hour Exam
56. Review
57. Review
58. Review
59. Review
60. Review

The final exam will consist of a multiple choice section and a long answer section. In lieu of a proof, the exam will have a problem in which a student will have to explain a concept in the student's own words.

Learning Goals and Objectives for Calculus III (SM223)

Upon successful completion of this course, students should be able to do the following:

1. Describe basic curves and space motion (including projectile motion) using vector functions and their derivatives and integrals
2. Draw and interpret level sets and graphs of a real valued function
3. Use partial derivatives, directional derivatives, and gradient vectors to describe the behavior of a real valued function.
4. Solve extreme value problems by finding and classifying critical points and by the method of Lagrange multipliers
5. Evaluate double and triple integrals in rectangular and polar coordinates and use integrals to find centers of mass and probabilities
6. Write well-organized, coherent solutions to applications problems
