
Solutions.

Problem �.

∂v
∂s
= ∂v
∂x

∂x
∂s
+ ∂v
∂y

∂y
∂s
= (�x sin y + y�exy)(�) + (x� cos y + xyexy + exy)(t)

∂v
∂t
= ∂v
∂x

∂x
∂t
+ ∂v
∂y

∂y
∂t
= (�x sin y + y�exy)(�) + (x� cos y + xyexy + exy)(s)

Note that when s = � and t = �, we have that x = � and y = �. �erefore,

∂v
∂s
�
s=�
t=�
= (� + �)(�) + (� + � + �)(�) = �

∂v
∂t
�
s=�
t=�
= (� + �)(�) + (� + � + �)(�) = �

Problem �.

dP
dt
= ∂P
∂L

dL
dt
+ ∂P
∂K

dK
dt

= [�.��(�.��)L−�.��K�.��]dL
dt
+ [�.��(�.��)L�.��K−�.��]dK

dt= [�.��(�.��)(��)−�.��(�)�.��](−�) + [�.��(�.��)(��)�.��(�)−�.��](�.�) (note the units!)
= −�.����

Problem �.

a. ∇ f (x , y) = ��xy, x� + �
� y
− �

� �
b. �e direction in question is �v = ��, ��. �e unit vector in the same direction as �v is �u = �v��v� = �√

����, ��. So, the
directional derivative of f at (�, �) in the direction �v is

D�u f (�, �) = ∇ f (�, �) ⋅ �u = ��, �
�
� ⋅ �√

��
��, �� = ��√

��

�erefore, at (�, �) in the direction towards (�, �), the slope of f is ��√
�� .

c. �emaximum rate of change of f at (�, �) is �∇ f (�, �)� = √���
� .

d. �e direction in which themaximum rate of change of f at (�, �) occurs is ∇ f (�, �) = ��, �� �.

Problem �.

Let F(x , y, z) = xy + yz + xz = �. �en, the surface in question is given by the equation F(x , y, z) = �, and the normal
vector to the surface at (�, �, �) is ∇F(�, �, �):

∇F(x , y, z) = �y + z, x + z, x + y� ⇒ ∇F(�, �, �) = ��, �, ��
�



�erefore, an equation of the tangent plane to the surface at (�, �, �) is
�(x − �) + �(y − �) + �(z − �) = �

and parametric equations of the normal line to the surface at (�, �, �) are
x = � + �t y = � + �t z = � + �t

Problem �.
First, �nd all the �rst partial derivatives:

fx(x , y) = �y − �x� fy(x , y) = �x − �y�
Next, �nd the critical points by solving the following system of equations:

�y − �x� = � ⇒ y = x� (�)
�x − �y� = � ⇒ x = y� (�)

Substituting (�) into (�), we get x = x�, which implies that x = −�, �, �. Plugging this back into (�), we get the following
critical points (−�,−�), (�, �), and (�, �).
Now, �nd the second partial derivatives:

fxx(x , y) = −��x� fyy(x , y) = −��y� fxy(x , y) = �
Now we can perform the second derivative test:

D(x , y) = (−��x�)(−��y�) − �� = ���x�y� − ��
● (−�,−�): D(−�,−�) = ��� > �, fxx(−�,−�) = −�� < �. �erefore, (−�,−�) is a local maximum.

● (�, �): D(�, �) = −�� < �. �erefore, (�, �) is a saddle point.
● (�, �): D(�, �) = ��� > �, fxx(�, �) = −�� < �. �erefore, (�, �) is a local maximum.

Problem �.
�e optimization model for this problem is

maximize xyz
subject to x + �y + �z = ��� (x , y, z > �)

In the notation we used in class for the Lagrangemultipliermethod, f (x , y, z) = xyz, g(x , y, z) = x + �y + �z and
k = ���. �e gradients are ∇ f (x , y, z) = �yz, xz, xy� ∇g(x , y, z) = ��, �, ��
So, the Lagrangemultiplier equations are

yz = λ (�)
xz = �λ (�)
xy = �λ (�)

x + �y + �z = ��� (�)
(�) and (�) imply xz = �yz, which implies x = �y, since z must be strictly positive. (�) and (�) imply xz = xy, which
implies z = y, since x also must be strictly positive. Substituting into (�), we obtain �y + �y + �y = ���, or y = ��.
Tracing our steps backwards, we obtain x = �� and z = ��. �erefore, we have one candidate for amaximum/minimum
to our optimization model, (��, ��, ��), whose value is f (��, ��, ��) = �����.
We can determine if f (��, ��, ��) = ����� is aminimumormaximum by testing another point that satsi�es the constraint
x + �y + �z = ���, such as (���, �, �). Note that f (���, �, �) = ���, so itmust be the case that f (��, ��, ��) = ����� is a
maximum.

�


