Calculus III with Optimization Textbook: Calculus: Early Transcendentals, 8th edition, by James Stewart Course Coordinator: Prof. Susan Margulies Email: margulie@usna.edu

SM223 (Fall 2021): Syllabus

1.	Three dimensional space	12.1	# 5, 9, 12, 15, 17, 27, 31, 35
2.	Vectors	12.2	# 3, 13, 19, 21, 25, 37
3.	Dot Product	12.3	# 7, 9, 11, 15, 23
4.	Dot Product	12.3	# 33, 35, 39, 41, 49, 55
5.	Cross Product	12.4	# 3, 9, 13, 14, 19
6.	Cross Product	12.4	# 27, 31, 33, 37
7.	Lines and Planes	12.5	# 3, 4, 7, 10, 13
8.	Lines and Planes	12.5	# 16, 19, 23, 26, 27
9.	Lines and Planes	12.5	# 31, 35, 45, 51, 67
10.	Cylinders and Quadric Surfaces	12.6	# 1, 3, 5, 11, 17
11.	Cylinders and Quadric Surfaces	12.6	# 21 - 28
12.	Review		
13.	Test $\#1$		
14.	Vector Functions	13.1	# 7, 9, 15, 16, 18
15.	Vector Functions	13.1	# 21 - 26
16.	Derivatives and Integrals	13.2	# 3, 5, 15, 19, 25, 28, 29, 34
17.	Arc Length (no curvature)	13.3	# 1, 3, 5, 9
18.	Motion in Space	13.4	# 5, 9, 13, 15, 18
19.	Motion in Space	13.4	# 19, 23, 25, 31, 35
20.	Functions of Many Variables	14.1	# 1, 3, 7, 24, 25
21.	Functions of Many Variables	14.1	# 32, 35, 36, 41, 44
22.	Functions of Many Variables	14.1	# 46, 61–66, 68, 69
23.	Partial Derivatives	14.3	# 3, 4, 5, 7, 8, 10
24.	Partial Derivatives	14.3	# 11, 15, 17, 18, 20
25.	Partial Derivatives	14.3	# 22, 26, 33, 34, 41, 42
26.	Partial Derivatives	14.3	# 53, 56, 64, 66, 74, 82
27.	Review		
28.	Test $\#2$		
29.	Tangent Planes and Linear Approximation	14.4	# 1, 2, 4, 5, 6
30.	Tangent Planes and Linear Approximation	14.4	# 21, 24, 25, 27
31.	Chain Rule	14.5	# 1, 2, 11, 13, 14, 35
32.	Chain Rule	14.5	# 3, 4, 15, 37, 38
33.	Chain Rule	14.5	# 5, 6, 39, 40, 41
34.	Gradients and Directional Derivative	14.6	# 1, 3, 7, 9, 13, 15
35.	Gradients and Directional Derivative	14.6	# 19, 21, 23, 29, 31
36.	Gradients and Directional Derivative	14.6	# 31, 33, 38, 41, 45, 49, 55
37.	Max-Min	14.7	# 3, 5, 6, 11, 41
38.	Max-Min	14.7	# 4, 12, 13, 45, 49
39.	Lagrange Multipliers	14.8	# 3, 5, 7, 9
40.	Lagrange Multipliers	14.8	# 19, 31, 33, 35

41.	Lagrange Multipliers	14.8	#21, 39, 45
42.	Review		
43.	Test $#3$		
44.	Double Integration over Rectangular Regions	15.1	# 1, 5, 7, 15, 17
45.	Double Integration over Rectangular Regions	15.1	# 8, 19, 21, 27, 28
46.	Double Integration over General Regions	15.2	# 1, 7, 13, 15, 17
47.	Double Integration over General Regions	15.2	# 19, 21, 27, 28, 45, 49
48.	Double Integration over Polar Coordinates	15.3	# 5, 7, 8, 9, 10, 11
49.	Double Integration over Polar Coordinates	15.3	# 12, 15, 29, 31, 32
50.	Applications	15.4	# 3, 7, 11, 13
51.	Application	15.4	# 27, 28, 29
52.	Triple Integrals	15.6	# 4, 5, 13, 14, 19
53.	Triple Integrals	15.6	# 27, 28, 33, 35
54.	Triple Integrals over Cylindrical Coordinates	15.7	# 1, 3, 9, 17
55.	Triple Integrals over Cylindrical Coordinates	15.7	# 18, 23, 24, 29
56.	Triple Integrals over Spherical Coordinates	15.8	# 1, 3, 5, 6, 9
57.	Triple Integrals over Spherical Coordinates	15.8	# 17, 19, 21, 25, 30, 41
-			

- 58. Review
- 59. Test #4
- 60. Review

The final exam will consist of a multiple choice section and a long answer section.

Course Goals: Upon successful completion of this course, midshipmen will be able to do the following:

- 1. Describe basic curves and space motion (including projectile motion) using vector functions and their derivatives and integrals
- 2. Draw and interpret level sets and graphs of a real valued function
- 3. Use partial derivatives, directional derivatives, and gradient vectors to describe the behavior of a real valued function.
- 4. Solve extreme value problems by finding and classifying critical points and by the method of Lagrange multipliers
- 5. Evaluate double and triple integrals in rectangular and polar coordinates and use integrals to find centers of mass and probabilities
- 6. Write well-organized, coherent solutions to applications problems