
Mathematics for Economics

1 Market Models

1.1 Linear Market Models with One Commodity

Suppose that the demand D for a product is related to the price P by the
linear equation D = a − bP , with a, b > 0, and that the supply S of the
product is given by S = −c + dP , with c, d > 0. Note that as the price
increases, the demand decreases and the supply increases. If D > S, there is
excess demand and the price will rise. If D < S, there is excess supply and
the price will fall. In both cases, the price is changing. The market is said
to be in an equilibrium state if the price is unchanging. For this to be
the case, we must have D = S. A model for market equilibrium is therefore

D = S

D = a − bP, a, b > 0

S = −c + dP, c, d > 0.

We choose c > 0 since it is reasonable to assume that no supply will be
available until price reaches some minimum positive value.

Given this model, we would like to find the price Pe at which the market is
in equilibrium. Since D = S at equilibrium, we have a − bPe = −c + dPe,
which can be written as

Pe =
a + c

b + d
.

If P = Pe, then

S = D = a − bPe = a − b

(
a + c

b + d

)

=
ad − bc

b + d
.

This shows that in order to have S = D be positive, we must have
ad − bc > 0.
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1.2 Nonlinear Market Models with One Commodity

It is possible that the demand and supply functions may not depend on
price in a linear manner. For example, we might have D = 8 − 3P 2,
S = P 2 − 1. We can find the equilibrium price for such a market model
with the same technique we used in the linear case. If D = S, then we have

8 − 3P 2 = P 2 − 1,

so that

P 2 =
9

4
,

giving P = 3
2
. More generally, if the model for market equilibrium is

D = S

D = f(P )

S = g(P ),

we can find the equilibrium price by solving the equation f(P ) = g(P ) for
P .

1.3 Linear Market Models with Two Commodities

Supppose we have two commodities which are related to each other. A
linear model for market equilibrium is given by

D1 = S1

D1 = d0 + d1P1 + d2P2

S1 = s0 + s1P1 + s2P2

D2 = S2

D2 = δ0 + δ1P1 + δ2P2

S2 = σ0 + σ1P1 + σ2P2,

(1)

where Di is the demand and Si is the supply for product i, i = 1, 2. Setting
Di = Si for i = 1, 2 gives

d0 + d1P1 + d2P2 = s0 + s1P1 + s2P2

δ0 + δ1P1 + δ2P2 = σ0 + σ1P1 + σ2P2.
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This is a system of two linear equations in the two variables P1, P2 which is
easily solved. For example, consider the model

D1 = S1

D1 = 7 − 4P1 + 2P2

S1 = −6 + 4P1 − P2

D2 = S2

D2 = 1 + P1 − P2

S2 = −4 − P1 + 2P2.

(2)

This model leads to the linear system

7 − 4P1 + 2P2 = −6 + 4P1 − P2

1 + P1 − P2 = −4 − P1 + 2P2,

which simplifies as

8P1 − 3P2 = 13

2P1 − 3P2 = −5.

The solution to this system is (P1, P2) = (3, 11
3
). Substituting these prices in

the expressions for Di or Si in (2) give us the supply and demand values in
the equilibrium state. We obtain D1 = S1 = 7

3
, D2 = S2 = 1

3
. Note that all

these values are nonnegative. Other choices of the constants in the
equations in (1) could produce negative values of the Di or Si, which would
indicate that the model was unrealistic from an economic standpoint.
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Problems for Section 1

1. Find the equilibrium price Pe for each of the following models.

a.

D = S

D = 3 − 2P

S = −1 + 5P

b.

D = S

D = 5 − 2P 2

S = −1 + 3P

c.

D = S

D = 4 − P 2

S = P 2 + 2P − 8

2. For the model

D1 = S1

D1 = 5 − 2P1 + P2

S1 = −3 + 5P1 − 2P2

D2 = S2

D2 = 2 + 2P1 − P2

S2 = −43 − 2P1 + 3P2,

a. Find P1 and P2 when the market is in an equilibrium state.

b. Find the demand and supply levels Di and Si, i = 1, 2, when the
market is in an equilibrium state.
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2 Matrices

We have seen that linear market models lead to systems of linear equations.
If there are many commodities in the model, we will have a system with
many variables. Matrices are a useful tool for solving linear systems of any
size.

2.1 Basic Concepts

A matrix is a rectangular array

A =






A11 · · · A1n

...
...

Am1 · · · Amn




 .

Each entry Aij can be taken to be a real number or a variable. A has m

rows and n columns. The i-th row is

[
Ai1 Ai2 · · · Ain

]

and the j-th column is 






A1j

A2j

...
Amj








.

The matrix entry Aij is in the i-th row and the j-th column. The size of A

is m × n (read as m by n). For example,

A =





1 3
9 6
4 7





is a 3 × 2 matrix with A11 = 1, A12 = 3, etc.

A 1 × n matrix is called a row vector. An m× 1 matrix is called a
column vector. An n-dimensional vector is written x = (x1, . . . , xn). An
n-dimensional vector can also be considered as a point in n-dimensional
space R

n. Row vectors and column vectors can be considered as vectors. If
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x = (x1, . . . , xn) and y = (y1, . . . , yn) are vectors, then the dot product of
x and y is the scalar

x · y =

n∑

i=1

xiyi.

For example, if x = (3, 1, 4) and y = (2, 0, 5), then
x · y = 3 · 2 + 1 · 0 + 4 · 5 = 26.

2.2 Matrix Arithmetic

Two m× n matrices A and B are equal if Aij = Bij for 1 ≤ i ≤ m,
1 ≤ j ≤ n. If A and B are two m × n matrices, then the sum A + B and
the difference A − B are m× n matrices, with

(A + B)ij = Aij + Bij and (A − B)ij = Aij − Bij.

For example, [
1 3
2 4

]

+

[
5 0
7 1

]

=

[
6 3
9 5

]

.

If c is a scalar and A is a matrix, then cA is a matrix of the same size as A,
with (cA)ij = cAij. For example,

3

[
4 5
8 2

]

=

[
12 15
24 6

]

.

If A is m× n and B is p× q, then the product AB of A and B is defined if
and only if n = p, and then AB is m × q with

(AB)ij = (Row i of A) · ( Column j of B).

For example,
[
1 3 2
4 0 1

]




5 1
2 3
0 4



 =

[
11 18
20 8

]

.

If A is an n× n matrix and m is a positive integer, then Am is defined to be

A · A · · ·A
︸ ︷︷ ︸

m

.

If v is a 1 × n row vector and w is an n × 1 column vector, then the matrix
product vw is a scalar (a 1 × 1 matrix) which equals the dot product v · w
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of v and w (considered as ordinary vectors). For example, if v = [ 2 3 ] and
w = [ 4

5 ], then

vw =
[
2 3

]
[
4
5

]

=
[
23
]

and
v · w = (2, 3) · (4, 5) = 2 · 4 + 3 · 5 = 23.

Matrix addition is associative, which means that

(A + B) + C = A + (B + C).

Matrix addition is also commutative:

A + B = B + A.

Matrix multiplication is associative:

(AB)C = A(BC).

However, there are matrices A and B for which

AB 6= BA.

In other words, matrix multiplication is not commutative. For example, let
A = [ 1 2

0 1 ], B = [ 1 0
3 1 ]. Then

AB =

[
7 2
3 1

]

and BA =

[
1 2
3 7

]

.

The distributive properties hold:

A(B + C) = AB + AC and (A + B)C = AC + BC.

The n × n identity matrix is

In =








1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1








.

(The symbol I is also used for identity matrices.) If A is m× n, then
AIn = A. If B is n × p, then InB = B.
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The m × n zero matrix is the m × n matrix 0 with all entries equal to 0.
If A is any matrix, then A + 0 = A and A0 = 0A = 0 whenever the
operations are defined.

An m × n matrix is square if m = n. A square matrix A is upper
triangular if Aij = 0 for i > j. A is therefore of the form

A =








A11 A12 · · · A1n

0 A22 · · · A2n

...
...

0 · · · 0 Ann








.

(All the entries below the main diagonal are zero.) A square matrix if
lower triangular if all the entries above the main diagonal are zero.

If A is an m × n matrix, the transpose of A is the n ×m matrix AT for
which AT

ij = Aji. AT is obtained from A by interchanging rows and
columns. For example,

[
1 2 3
4 5 6

]T

=





1 4
2 5
3 6



 .

An n × n matrix A is invertible (or nonsingular) if there is an n × n

matrix A−1 such that
AA−1 = A−1A = I.

For example, if A = [ 1 2
3 7 ], then A is invertible and A−1 = [ 7 −2

−3 1 ]. More
generally, if A = [ a b

c d ] and ad − bc 6= 0, then A is invertible and

A−1 =
1

ad − bc
[ d −b
−c a ].

If A−1 exists, it is unique and is called the inverse of A. Non-invertible
matrices are called singular. For example, the zero matrix is singular. If A

and B are invertible, then

(A−1)−1 = A and (AB)−1 = B−1A−1.
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To check if a matrix B is the inverse of A, one only needs to check one of
the two conditions AB = I , BA = I . If one of the conditions is true, then
the other is also true.

If A is invertible and m is a positive integer, then A−m is defined to be

A−1 · A−1 · · ·A−1
︸ ︷︷ ︸

m

.

If A is invertible and m is any integer, then

(A−1)m = (Am)−1.

If A is n × n, then A0 is defined to be In.
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Problems for Section 2

1. If x = (1, 3, 4, 2) and y = (−4, 2, 5,−3), calculate x · y.

2. Let

A =

[
1 3 2
−1 0 4

]

, B =

[
−3 2 0
5 1 1

]

, C =

[
4 1
2 −1

]

.

Calculate, if possible, 2A + 3B, A − B, AB, CA, BC , CCT and ABT .

3. Show that if A = [ 3 6
2 5 ], then

A−1 =

[
5
3

−2
−2

3
1

]

by showing that AA−1 = I .

4. If A is a 2 × 3 matrix with Aij = i2 + 3j + 2, write A as a rectangular
array.

5. Show that In is invertible and I−1
n = In.

6. Give an example of a non-zero 3 × 3 matrix which is not invertible.

7. Find two 2 × 3 matrices A and B so that ABT 6= BAT .

8. For each n, find an n × n matrix Jn so that Jn 6= In and J2
n = In.

9. Let A = [ 2 3
4 5 ]. Find A−1.
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3 Linear Systems and Matrices

3.1 Matrix Form

Suppose we have a linear system of m equations in n variables x1, . . . , xn,
written as

a11x1+ · · · + a1nxn = b1

a21x1+ · · · + a2nxn = b2

...

am1x1+ · · · + amnxn = bm.

We can write the system in the matrix form AX = b, where A is the
m × n coefficient matrix

A =






a11 · · · a1n

...
...

am1 · · · amn




 ,

X =






x1
...

xn






and

b =






b1
...

bm




 .

For example, the system

x + 2y − z = 3

3x − y + 4z = 1

can be written as AX = b, where

A =

[
1 2 −1
3 −1 4

]

, X =





x

y

z



 and b =

[
1
3

]

.
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3.2 Reduced Row Echelon Form

As we saw above, every linear system of equations can be written in matrix
form. For example, the system

x + 2y + 3z = 4

3x + 4y + z = 5

2x + y + 3z = 6

can be written as 



1 2 3
3 4 1
2 1 3









x

y

z



 =





4
5
6



 .

It is also useful to form the augmented matrix





1 2 3 4
3 4 1 5
2 1 3 6



 .

Note that the fourth column consists of the numbers in the system on the
right side of the equal signs.

If the augmented matrix has a particularly simple form, then the system is
very easy to solve.

Definition. A matrix is in reduced row echelon form (RREF) if

1. The nonzero rows appear above the zero rows.

2. In any nonzero row, the first nonzero entry is a one (called the leading
one).

3. The leading one in a nonzero row appears to the left of the leading one in
any lower row.

4. If a column contains a leading one, then all the other entries in that
column are zero.
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Example. Each of the following matrices is not in RREF.




1 0 0
0 0 0
0 0 1



 ,





2 0 0
0 0 0
0 0 0



 ,





1 0 0
0 0 1
0 1 0



 ,





1 2 3 4 3
0 1 1 2 0
0 0 0 0 0





Example. Each of the following matrices is in RREF.





1 0 3 4 5
0 1 1 2 0
0 0 0 0 0



 ,







1 0 3 0
0 1 4 0
0 0 0 1
0 0 0 0







,







1 0 0 2
0 1 0 3
0 0 1 4
0 0 0 0







The augmented matrix of any system of linear equations can be
transformed into RREF by performing a series of operations on the rows of
the matrix. The general plan is to first transform the entries in the lower
left into zeros. The final step is to transform all the entries above the
leading ones into zeros. The allowable operations are called elementary
row operations. They are:

1. Divide a row by a nonzero number.

2. Subtract a multiple of a row from another row (or add a multiple of a
row to another row).

3. Interchange two rows.

Performing any of these operations on an augmented matrix leads to a new
system of equations which has the same set of solutions as the original
system.

Example. Consider the system

2x + 8y + 4z = 2

2x + 5y + z = 5

4x + 10y − z = 1.

The corresponding augmented matrix is




2 8 4 2
2 5 1 5
4 10 −1 1




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Step 1. (Row 1)→ 1
2

(Row 1) gives





1 4 2 1
2 5 1 5
4 10 −1 1





Step 2. (Row 2)→(Row 2) − 2 (Row 1) gives





1 4 2 1
0 −3 −3 3
4 10 −1 1





Step 3. (Row 3)→ (Row 3) − 4 (Row 1) gives





1 4 2 1
0 −3 −3 3
0 −6 −9 −3





Step 4. (Row 2) → −1
3

(Row 2) gives





1 4 2 1
0 1 1 −1
0 −6 −9 −3





Step 5. (Row 3)→(Row 3) + 6 (Row 2) gives





1 4 2 1
0 1 1 −1
0 0 −3 −9





Step 6. (Row 3)→ −1
3

(Row 3) gives





1 4 2 1
0 1 1 −1
0 0 1 3





Step 7. (Row 1) → (Row 1) − 4 (Row 2) gives





1 0 −2 5
0 1 1 −1
0 0 1 3




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Step 8. (Row 2)→(Row 2) − (Row 3) gives





1 0 −2 5
0 1 0 −4
0 0 1 3





Step 9. (Row 1) → (Row 1) + 2 (Row 3) gives





1 0 0 11
0 1 0 −4
0 0 1 3





This matrix is in RREF.

To put a matrix into RREF with your calculator, put the scratchpad in
calculate mode. Then press MENU,7,5 and enter the matrix by using the
key to the right of the 9 key.

3.3 Finding the Solutions

Once the augmented matrix of a linear system is put into RREF, it is easy
to find all the solutions. A column of the matrix which contains a leading
one is called a leading column. A variable which corresponds to a leading
column is called a leading variable. The non-leading variables are called
free variables. To find all solutions to the system corresponding to the
RREF (and therefore to the original system), just solve the equations for
the leading variables in terms of the free variables.

Example. Continuing with the previous example, the RREF is





1 0 0 11
0 1 0 −4
0 0 1 3



 .

There are 3 leading variables and no free variables. The linear system
corresponding to the RREF is x1 = 11, x2 = −4, x3 = 3. The equations are
already solved for the leading variables. The system has the one solution
(11,−4, 3).
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Example. Suppose that the RREF of the augmented matrix of a linear
system is





1 0 1 1 3
0 1 0 2 1
0 0 0 0 0



 .

The corresponding system is

x1 + x3 + x4 = 3

x2 + 2x4 = 1.

The leading variables are x1, x2. The free variables are x3, x4. Solving for
the leading variables gives

x1 = −x3 − x4 + 3

x2 = −2x4 + 1.
(3)

If x3 and x4 are assigned values, then x1 and x2 are determined by (3) and
we obtain a solution (x1, x2, x3, x4). The solution can also be written in
vector form as







x1

x2

x3

x4







=







−x3 − x4 + 3
−2x4 + 1

x3

x4







= x3







−1
0
1
0







+ x4







−1
−2
0
1







+







3
1
0
0







.

For example, if we let x3 = x4 = 0, then the corresponding solution is







x1

x2

x3

x4







=







3
1
0
0







.

If x3 = 1, x4 = 0, we obtain







x1

x2

x3

x4







=







2
1
1
0







.
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If we let x3 = x4 = 1, we obtain







x1

x2

x3

x4







=







1
−1
1
1







.

Note that since x3 and x4 can take on infinitely many values, there are
infinitely many solutions.

Any linear system will have either one solution, no solutions or infinitely
many solutions. If the RREF has a row of the form

[
0 0 · · · 0 1

]
,

then there are no solutions since the equation corresponding to this row is
0 = 1, which has no solutions. If there is no such row in the RREF, then
there is either one or infinitely many solutions. If there are solutions and
there is a free variable, then there are infinitely many solutions. If there are
solutions and there are no free variables, then there is exactly one solution.

Example. Consider the system

x + 3y = 1

2x + 6y = 2.

The augmented matrix for this system is

[
1 3 1
2 6 2

]

.

The RREF is [
1 3 1
0 0 0

]

.

The variable y is free, so there are infinitely many solutions. Written in
vector form, the solutions are all of the form

[
x

y

]

= y

[
−3
1

]

+

[
1
0

]

.
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Example. For the system

x + 3y = 1

2x + 6y = 3,

the augmented matrix is [
1 3 1
2 6 3

]

and the RREF is [
1 3 0
0 0 1

]

,

so the system has no solutions.

Example. For the system

x + 3y = 1

2x + 5y = 2,

the augmented matrix is [
1 3 1
2 5 2

]

and the RREF is [
1 0 1
0 1 0

]

,

so the system has the one solution

[
x

y

]

=

[
1
0

]

.
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3.4 Elementary Row Operations and Inverses

Fact. If A is n × n, then A is invertible ⇐⇒ RREF (A) = I .

Fact. If a series of elementary row operations transforms A into I , then the
same series of elementary row operations transforms I into A−1.

For example, let

A =





0 3 0
0 0 4
2 0 0



 .

The following series of elementary row operations transforms A into I .

1. Interchange Row 2 and Row 3

2. Interchange Row 1 and Row 2

3. (Row 1) → 1
2

(Row 1)

4. (Row 2) → 1
3

(Row 2)

5. (Row 3) → 1
4

(Row 3)

Performing the same series of operations on I transforms I into

A−1 =





0 0 1
2

1
3

0 0
0 1

4
0



 .
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3.5 Solving Systems with Inverses

If AX = b is a linear system with A invertible, then there is a unique
solution X = A−1b. This is seen by noting that the following four
statements are equivalent:

1. AX = b

2. A−1AX = A−1b

3. IX = A−1b (since A−1A = I)

4. X = A−1b (since IX = X)

For example, the unique solution to the system

[
3 4
2 5

] [
x

y

]

=

[
1
3

]

is [
x

y

]

=

[
3 4
2 5

]−1 [
1
3

]

=
1

7

[
5 −4
−2 3

][
1
3

]

=

[
−1
1

]

.
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Problems for Section 3

1. Find the RREF of each of the following matrices by hand. Check your
answers with your calculator.

a.

[
1 3
2 4

]

b.

[
1 3
2 6

]

c.





1 3 1
2 1 4
3 −1 7



 d.





1 1 3 4
2 −1 0 5
1 2 5 5





2. Write each of the following systems in matrix form, find the RREF of the
augmented matrix by hand, check the RREF with your calculator and
find all the solutions to the system. Write your solutions in vector form.

a. x + 2y = 5

2x − y = 1

b. x + y + 5z = 5

x− y − z = 1

c. 3x + 4y − z = 8

6x + 8y − 2z = 3

d. x + 2y + 3z = 4

2x + y = 2

x + 5y + 8z = 10

e. x + 2y + 3z = 4

2x + y = 2

5x + y − 3z = 2

f . x + 2y + 3z = 4

2x + y = 2

5x + y − 3z = 3

3. Does each of the following systems have no solutions, one solution, or
infinitely many solutions?

a. 2x − y = 3

4x − 2y = 5

b. 2x − y = 3

4x − 2y = 6

c. 2x + y = 1

4x − 2y = 3

4. For each of the following matrices A, determine if A is invertible by
finding the RREF. If A is invertible, find A−1 by using row operations.

a.

[
1 2
3 4

]

b.

[
2 3
4 6

]

c.





0 2 0
0 0 3
4 0 0



 d.





1 0 1
3 1 0
2 0 1




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5. Solve each of the following systems by finding the inverse of the
coefficient matrix.

a. x + 2y = 2

3x + 7y = 5

b. x + z = 1

y = 2

x + 2z = 3
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4 Determinants

4.1 Basic Concepts

If A = [aij] is an n × n matrix, then the determinant of A, denoted |A| or
det(A), is a real number. If n = 1, then |[a]| = a. If n = 2, then

|[ a b
c d ]| = ad − bc.

To calculate |A| for an n × n matrix, let Mij be the determinant of the
(n − 1) × (n − 1) matrix obtained by deleting the i-th row and the j-th
column of A. (Mij is called a minor.) For example, let

A =





1 3 2
4 2 5
3 0 1



 .

To calculate M11, we delete row 1 and column 1 of A to get the 2 × 2
matrix [ 2 5

0 1 ]. Then M11 is the determinant |[ 2 5
0 1 ]| = 2. Similarly, to

calculate M23, we delete row 2 and column 3 of A to get [ 1 3
3 0 ]. M23 is the

determinant |[ 1 3
3 0 ]| = −9. Let

Cij = (−1)i+jMij.

(Cij is called a cofactor.) Note that if i + j is even,

(−1)i+j = 1

and if i + j is odd,
(−1)i+j = −1.

For the matrix A above, for example, we have

C11 = (−1)1+1M11 = 2

and
C23 = (−1)2+3M23 = (−1)(−9) = 9.
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To calculate |A|, pick i with 1 ≤ i ≤ n and consider the i-th row of A,
which consists of ai1, ai2, . . . , ain. Then

|A| =
n∑

j=1

aijCij.

This is known as ”expanding along the i-th row”. Alternatively, pick j with
1 ≤ j ≤ n. Consider the j-th column of A. It consists of a1j, a2j, . . . , anj.
Then

|A| =
n∑

i=1

aijCij.

This is known as ”expanding along the j-th column”. For example, again let

A =





1 3 2
4 2 5
3 0 1



 .

If we expand along the first row (so that i = 1), then

|A| = a11C11 + a12C12 + a13C13

= a11M11 − a12M12 + a13M13

= 1

∣
∣
∣
∣

[
2 5
0 1

]∣
∣
∣
∣
− 3

∣
∣
∣
∣

[
4 5
3 1

]∣
∣
∣
∣
+ 2

∣
∣
∣
∣

[
4 2
3 0

]∣
∣
∣
∣

= 1(2 − 0) − 3(4 − 15) + 2(0 − 6) = 23.

If we expand along the third row (so that j = 3), then

|A| = a13C13 + a23C23 + a33C33

= a13M13 − a23M23 + a33M33

= 2

∣
∣
∣
∣

[
4 2
3 0

]∣
∣
∣
∣
− 5

∣
∣
∣
∣

[
1 3
3 0

]∣
∣
∣
∣
+ 1

∣
∣
∣
∣

[
1 3
4 2

]∣
∣
∣
∣

= 2(0 − 6) − 5(0 − 9) + 1(2 − 12) = 23.

A good strategy is to expand along a row or column that consists mostly of
zeros. For example, let

A =







3 0 2 4
1 2 1 3
0 3 0 0
0 2 2 1







.
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The third row has only one non-zero entry, so we expand along that row.

|A| =
4∑

j=1

a3jC3j

= a32C32 (since a31 = a33 = a34 = 0)

= 3(−1)2+3M32

= −3

∣
∣
∣
∣
∣
∣





3 2 4
1 1 3
0 2 1





∣
∣
∣
∣
∣
∣

= 27.

4.2 Properties of Determinants

1. If A → B by switching 2 rows, then |B| = −|A|.
2. If A → B by multiplying a row or column of A by k, then |B| = k|A|.
3. If A → B by adding or subtracting a multiple of a row or column to
another row or column, then |B| = |A|.
4. If one row is a multiple of another row, then |A| = 0. Similarly for
columns. In particular, if A has a row of zeros or a column of zeros, then
|A| = 0.

5. If A is an upper triangular or lower triangular matrix, then |A| is the
product of the diagonal entries, so that if

A =








A11 A12 · · · A1n

0 A22 · · · A2n

...
...

0 · · · 0 Ann








,

then
|A| = A11A22 · · ·Ann.

These properties provide another method for calculating determinants.
Properties 1-3 spell out how the determinant changes when we apply an
elementary row operation. Suppose we transform A into a triangular
matrix B with a series of elementary row operations. Then it is easy to
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calculate |B| by using Property 5. We can relate |A| to |B| by using
Properties 1-3. For example, let

A =





5 10 20
3 6 5
2 3 1



 .

We perform the following series of elementary row operations:

Step 1. (Row 1)→ 1
5
(Row 1) gives





1 2 4
3 6 5
2 3 1



 .

This operation multiplies |A| by 1
5
.

Step 2. (Row 2)→ (Row 2) - 3(Row 1) gives





1 2 4
0 0 −7
2 3 1



 .

This operation leaves the determinant unchanged.

Step 3. (Row 3)→(Row 3) - 2(Row 1) gives





1 2 4
0 0 −7
0 −1 −7



 .

This operation leaves the determinant unchanged.

Step 4. Interchanging (Row 2) and (Row 3) gives





1 2 4
0 −1 −7
0 0 −7



 .

This operation multiplies the determinant by −1. Let B be the matrix
obtained by Step 4. B is an upper triangular, so by Property 5,
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|B| = 1(−1)(−7) = 7. Also the net effect of Steps 1-4 is to multiply |A| by

(
1

5
)(1)(1)(−1) = −1

5
.

Therefore,

|B| = −1

5
|A|,

so |A| = −5|B| = (−5)(7) = −35.

4.3 Determinants and Inverses

In case you want to check if a square matrix is invertible without trying to
calculate the inverse, the following theorem is useful.

Theorem. If A is n × n, then |A| 6= 0 ⇐⇒ A−1 exists.

For example, if A = [ 3 2
5 4 ], then A is invertible since |A| = 2. If

B =





1 2 3
4 5 6
7 8 9



 ,

then |B| = 0, so B is not invertible

4.4 Cramer’s Rule

Cramer’s Rule is a method for solving a system of linear equations AX = b
when A is a square matrix and |A| 6= 0. Write

X =






x1
...

xn




 .

Let Ai be the n× n matrix obtained from A by replacing the i-th column of
A with the vector b. Then

xi =
|Ai|
|A| .
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For example, consider the linear system

[
2 4
3 7

] [
x

y

]

=

[
5
9

]

.

We have
A = [ 2 4

3 7 ], A1 = [ 5 4
9 7 ] and A2 = [ 2 5

3 9 ].

By Cramer’s Rule, the solution is

x =
|[ 5 4

9 7 ]|
|[ 2 4

3 7 ]| = −1

2
, y =

|[ 2 5
3 9 ]|

|[ 2 4
3 7 ]| =

3

2
.
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Problems for Section 4

1. Let A = [ 2 3
4 5 ]. Calculate |A|.

2. Let

A =





1 2 3
4 5 6
7 8 9



 .

a. Find M23.

b. Find C23.

c. Calculate |A| by expanding along the first row.

d. Calculate |A| by expanding along the second column.

3. Let

A =







1 0 2 1
0 4 7 8
2 0 1 3
−1 0 0 2







.

Calculate |A| by using row operations to reduce A to a triangular
matrix.

4. Let

A =







1 0 4 3
2 3 1 2
1 0 2 0
1 0 1 1







.

Calculate |A| by expanding along the second column.

5. Use the Theorem in Section 4.3 to determine if the following matrices
are invertible.

a.

[
6 10
4 6

]

b.





1 3 2
2 1 4
1 8 2




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6. Use Cramer’s Rule to solve the system

x + 2y = 3

2x + 7y = 5.

30



5 Applications

We present several applications to economic models of the techniques for
solving linear systems.

5.1 Market Model

By eliminating the quantity variables, the linear market model for two
commodities can be written as

aP1 + bP2 = u

cP1 + dP2 = v,

where P1 and P2 are the two prices. If |[ a b
c d ]| 6= 0, then this system can be

solved by using Cramer’s Rule. The equilibrium prices are

P1 =

∣
∣
∣
∣

[
u b

v d

]∣
∣
∣
∣

∣
∣
∣
∣

[
a b

c d

]∣
∣
∣
∣

, P2 =

∣
∣
∣
∣

[
a u

c v

]∣
∣
∣
∣

∣
∣
∣
∣

[
a b

c d

]∣
∣
∣
∣

.

5.2 National Income Model

The national income model is given by

Y = C + I0 + G0

C = a + bY,

where Y is national income, C is planned consumption expenditures, I0 is
investment and G0 is government expenditure. The first equation says that
national income equals total expenditure by consumers, business and
government. The second equation says that expenditures by consumers
(consumption) equals some baseline amount plus a fraction of the national
income (so 0 < b < 1). You may think of b as depending on consumers’
mood. To solve this system for Y and C , we rewrite it as

Y − C = I0 + G0

−bY + C = a.
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The coefficient matrix is A =
[

1 −1
−b 1

]
. Solving using Cramer’s Rule, we get

Y =
| I0+G0 −1

a 1 |
|A| =

I0 + G0 + a

1 − b

and

C =
| 1 I0+G0

−b a |
|A| =

a + b(I0 + G0)

1 − b
.

5.3 Leontief Input-Output Models

Suppose we have n factories and consumers. There is consumer demand for
the products of the factories. In addition, each factory needs products from
their own factory and the other factories in order to produce their product.
We would like to find the output level for each factory so that all the
demands are met with no product left over. Let di be the consumer
demand for product i. Let xi be the output of factory i. We measure the
demand and output in terms of units (which could be dollars). Let aij be
the number of units that factory i sends to factory j for each unit that
factory j produces. Let A be the n × n matrix [aij]. When n = 2, we have
the following system of equations:

x1 = a11x1 + a12x2 + d1

x2 = a21x1 + a22x2 + d2.

This can be written as

(1 − a11)x1 − a12x2 = d1

−a21x1 + (1 − a22)x2 = d2.

Writing this in matrix form gives
[
1 − a11 −a12

−a21 1 − a22

][
x1

x2

]

=

[
d1

d2

]

,

which can be written as
([

1 0
0 1

]

−
[
a11 a12

a21 a22

])[
x1

x2

]

=

[
d1

d2

]

or
(I − A)X = D.
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The matrix I − A is called the Leontief matrix. If (I − A) is invertible,
then the output vector is

X = (I − A)−1D.

This formula is also valid for the general case of n factories.

Example. Suppose we have 2 factories. Factory 1 (a power plant)
produces electricity and Factory 2 (a municipal water facility) produces
water. To have output from the two factories measured in common units,
we measure both outputs in dollars. For each unit of electricity produced,
Factory 1 must use .2 units of electricity and .4 units of water. For each
unit of water produced, Factory 2 must use .3 units of electricity and .1
units of water. Also, consumer demand is 10 units of electricity and 30
units of water. We have

A =

[
.2 .3
.4 .1

]

.

The output vector is

X = (I −A)−1D =

[
.8 −.3
−.4 .9

]−1 [
10
30

]

=

[
30

46.7

]

.

We assume that each factory spends $1 to produce $1 worth of output.
Since

n∑

i=1

aij

is the amount per unit of output that factory j spends on the products it
receives from the n factories (including itself), there is

1 −
n∑

i=1

aij

per unit left over. This amount is spent on labor. Let a0j denote this
amount. Factory j therefore spends a0jxj on labor. The total labor cost for
all n factories is

n∑

j=1

a0jxj. (4)
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It can be shown that the total labor cost (4) also equals

n∑

i=1

di, (5)

so it is possible to calculate the total labor cost without solving for the
outputs xj.

Example. Using the setup from the previous example, we see that the
total labor cost is d1 + d2 = 10 + 30 = 40. We have

a01 = 1 − a11 − a21 = 1 − .2 − .4 = .4

and
a02 = 1 − a12 − a22 = 1 − .3 − .1 = .6.

Since x1 = 30 and x2 = 46.7, we see that Factory 1 spends (.4)(30) = 12 on
labor and Factory 2 spends (.6)(46.7) = 28 on labor. Note that the total
spent by both factories is therefore 12 + 28 = 40, which agrees with the
alternate calculation for total labor cost of 10 + 30 = 40.
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Problems for Section 5

1. Consider the two commodity market model given by

D1 = S1

D1 = 10 − 2P1 + P2

S1 = −2 + 3P1

D2 = S2

D2 = 15 + P1 − P2

S2 = −1 + 2P2.

Find the equilibrium prices by using Cramer’s Rule.

2. Consider the three commodity market model given by

D1 = S1

D1 = 20 − P1 + 2P2 + P3

S1 = −2 + 13P1

D2 = S2

D2 = 25 + 2P1 − P2 + 2P3

S2 = −1 + 12P2

D3 = S3

D3 = 30 + 3P1 + 2P2 − P3

S3 = −3 + 14P3

Find the equilibrium prices.

3. Suppose that in a national income model as above, we have I0 = 8,
G0 = 5, a = 4 and b = 1

3
. Use Cramer’s Rule to find Y and C .

4. Suppose we have a facility (E) that produces electricity and a facility
(C) that sells chemicals. For each unit of electricity that E produces, it
uses .4 units of electricity and .5 units of chemicals. For each unit of
chemicals that C produces, it uses .1 units of electricity and .5 units of
chemicals. The consumer demand is 20 units of electricity and 10 units
of chemicals.
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a. Find the Leontief matrix I −A for the input-output model.

b. Find the output levels for each facility so that the demands of both
the facilities and the consumers are satisfied.

c. Calculate the total labor cost by using equation (4).

d. Calculate the total labor cost by using equation (5).

e. How much does E pay C?

f. How much does C pay E?

g. How much does E pay for labor?

h. How much does C pay for labor?

5. We have 3 factories. Factory 1 produces plastic, factory 2 produces
rubber and factory 3 produces metal. For each unit that factory 1
produces, it uses .1 units of plastic, .2 units of rubber and .2 units of
metal. For each unit that factory 2 produces, it uses .2 units of rubber,
.3 units of plastic and .1 units of metal. For each unit that factory 3
produces, it uses .3 units of metal, .2 units of plastic and .4 units of
rubber. The consumer demand is 70 units of plastic, 50 units of rubber
and 30 units of metal.

a. Find the output levels for each factory so that the demands of both
the factories and the consumers are satisfied.

b. Find the total labor cost.

c. For 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3, how much does factory i pay factory j?

d. How much does each factory pay for labor?
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6 Discrete Dynamical Systems

Suppose that At is the amount of money we have in a bank account at time
t. Our initial deposit is therefore A0. Suppose that the bank pays interest
annually at the rate r. This means that after one year, the bank pays us
interest of rA0, so we have in our account

A1 = A0 + rA0 = (1 + r)A0.

After one more year, we have

A2 = A1 + rA1 = (1 + r)A1.

In general, we have

An+1 = An + rAn = (1 + r)An.

We would like to know how much we will have in our account after n years,
where n = 1, 2, 3, ... This amount will depend on the initial deposit A0 and
the interest rate r. This problem is easily solved by writing

A1 = (1 + r)A0

A2 = (1 + r)A1 = (1 + r)(1 + r)A0 = (1 + r)2A0

A3 = (1 + r)A2 = (1 + r)(1 + r)2A0 = (1 + r)3A0

...

An = (1 + r)nA0.

For example, if A0 = 100 and r = .05, then after 10 years, we have

A10 = (1.05)10100 ≈ 162.89.

Suppose, more generally, that we measure a quantity at times
n = 0, 1, 2, 3..., and let An be the quantity at time n. A discrete
dynamical system is an equation which describes a relationship between
the quantity at a point in time and the quantity at earlier points in time.
We will also call these dynamical systems and use the abbreviation DS.
If the quantity depends only on the quantity at the previous point in time,
we will call this a first order dynamical system and write

An+1 = f(An),
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where f(x) is a function of one variable. We can also think of a first order
DS as a sequence of numbers for which there is a rule that relates each
number in the sequence to the previous number in the sequence. For
example, the DS

An+1 = (1 + r)An, n ≥ 0,

corresponds to the sequence

A0, (1 + r)A0, (1 + r)2A0, . . . .

Another DS is given by the equation

An+2 = An+1 + An, n ≥ 0.

If we specify that A0 = A1 = 1, then we obtain the sequence

1, 1, 2, 3, 5, 8, 13, 21, . . . .

This is the well-known Fibonacci sequence. It is not a first order DS since
each member of the sequence depends on the previous two members. We
can write

An+2 = g(An, An+1),

where g(x, y) = x + y.

For the rest of this section we will consider only first order DS
An+1 = f(An). If f(x) is a function of the form f(x) = sx + b, we will say
the DS is linear. Otherwise, the DS is nonlinear. For example, the DS
An+1 = 3An is linear, since f(x) = 3x, but An+1 = 3An − A2

n is nonlinear,
since f(x) = 3x − x2.

Given a DS An+1 = f(An), we would like to find a sequence of numbers
A0, A1, . . . which satisfies the DS for all n ≥ 0. We will refer to such a
sequence as a solution to the DS. For example, a solution to the DS
An+1 = 3An is the sequence An = c 3n, where c is any real number, since

An+1 = c 3n+1 = 3(c 3n) = 3An.

We therefore have infinitely many solutions to the DS. In fact, any solution
to this DS is of the form An = c 3n for some real number c. We say that
An = c 3n is the general solution to the DS. If we also specify the value of
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A0, then we say that we are given an initial condition (IC). For example,
suppose that A0 = 5. Then if An = c 3n is a solution to the DS which
satisfies the IC, we must have

5 = A0 = c 30 = c.

Therefore, there is exactly one solution to the DS which satisfies the IC. It
is An = 5 · 3n. A solution to a DS which also satisfies an IC is called a
particular solution.

Suppose that a DS An+1 = f(An) has the solution

An = c, n = 0, 1, 2, . . .

for some real number c. The quantity An is unchanging as n changes. The
system involving the quantities An is in an equilibrium state and the
number c is called an equilibrium value or a fixed point of the DS.
Also, An = c is called a constant solution to the DS. We then have
An+1 = An = c for all n, so An+1 = f(An) implies that c = f(c). Conversely,
if c = f(c), then An = c gives a constant solution. Therefore, to find all the
fixed points of the DS, we only need to solve the equation c = f(c).

Example 1. If An+1 = 4An − 2, we have f(x) = 4x − 2, so c = f(c) gives
c = 4c − 2 and the only fixed point is c = 2

3
. If A0 = 2

3
, then

A1 = 4

(
2

3

)

− 2 =
2

3
, A2 = 4

(
2

3

)

− 2 =
2

3
, ...

and so An = 2
3

for all n = 1, 2, 3...

Example 2. If An+1 = sAn + b is the general first order linear DS, then
f(x) = sx + b and the fixed points are the solutions to c = sc + b. If s 6= 1,
the only solution is

c =
b

1 − s
.

If s = 1 and b 6= 0, there are no fixed points. If s = 1 and b = 0, then the
DS is An+1 = An and any number c is a fixed point.

The solution to a DS can sometimes be found by writing out the first few
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cases of An+1 = f(An), simplifying so that each An+1 is expressed in terms
of A0 and noticing a pattern. For example,we saw that if An+1 = (1 + r)An,
then An = (1 + r)nA0. Similary, if An+1 = An + b, then we have

A1 = A0 + b

A2 = A1 + b = A0 + 2b

...

An = A0 + nb

and we see that the solution is An = A0 + nb.
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Problems for Section 6.

1. We deposit $1000 in the the bank. The interest rate is 6%, compounded
annually. How much do we have after 15 years?

2. We deposit $1000. The annual rate is 6%, compounded monthly. How
much do we have after 15 years?

3. Suppose the general solution to a DS is An = c7n. The initial condition
is A0 = 3. Find the particular solution that satisfies the IC.

4. The DS is An+1 = A2
n − 5An + 6. Find the fixed points.

5. The DS is An+1 = 3An − 2. Find a formula for An in terms of A0 by
finding A1, A2 and A3 and guessing the pattern.

41



7 Interest Rates

We saw that if r is the annual interest rate and interest is compounded
annually, then the amount we have in our account after n years is

An = A0(1 + r)n,

where A0 is the initial amount. Now suppose that r is the annual rate but
that we compound monthly instead of annually. At the end of each month,
we earn interest at the rate of r

12
on the amount we had in the account

during that month. The amount we have after n months is determined by
the DS

An+1 = An

(

1 +
r

12

)

,

and the solution to the DS is

An = A0

(

1 +
r

12

)n

.

More generally, suppose we split the year up into k equal pieces (for
example, k = 1, 12, 52, 365). The pieces are also called time units or
periods. An represents the amount we have after n periods, each period
being 1

k
years. With an annual rate of r, we compound at the end of each of

the k periods, earning interest at the rate of r
k

on the amount we had
during that period. The DS in this case is

An+1 = An

(

1 +
r

k

)

,

and the solution is
An = A0

(

1 +
r

k

)n

.

If we want the amount in the account after t years, we convert this to kt

periods and the amount is

Akt = A0

(

1 +
r

k

)kt

.
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Example. Suppose A0 = 100 and the annual rate is r = .05. The
amounts A10k we have in the account after 10 years for various values of k are:

k amount
1=annually 162.889
12=monthly 164.701
52=weekly 164.833
365=daily 164.866

(365)(24)=hourly 164.872
∞=continuously 164.872

Note that the last two entries are equal up to three decimal places. Each
line in the table except for the last is computed using

A10k = 100

(

1 +
.05

k

)10k

.

The last entry is computed using the formula (which you may have learned
in calculus)

A = A0e
rt,

with A0 = 100, r = .05 and t = 10. In general, as the number of
compounding periods k in a year approaches infinity, we have

A0

(

1 +
r

k

)kt

→ A0e
rt.
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Problems for Section 7.

1. We make an initial deposit of A0 in our account. The annual interest
rate is r, compounded 52 times per year.

a. Find the dynamical system (DS) which models this situation.

b. Find the solution to the DS in a.

c. Find the fixed points of the DS if r 6= 0.

d. Assume that A0 = 100 and r = .08. Find the amount in the account
after 5 years.

2. Suppose the annual rate is .05, compounded monthly. How much should
we deposit initially so that we have 10,000 in 40 years?

3. We deposit 1000 initially. Find the smallest annual rate which will let us
accumulate at least 2000 over 10 years if interest is compounded

a. annually b. daily
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8 Cobwebs

Cobwebs are a graphical method for understanding discrete dynamical
systems An+1 = f(An). They are constructed as follows:

1. Draw the graph of y = f(x),

2. Draw the line y = x.

3. Pick an initial point A0 on the x-axis.

4. Connect (A0, 0) to (A0, A1) with a vertical line. Note that A1 = f(A0),
so (A0, A1) is on the graph of y = f(x).

5. Connect (A0, A1) to (A1, A1) with a horizontal line.

6. Connect (A1, A1) to (A1, A2) with a vertical line. Note that A2 = f(A1),
so (A1, A2) is on the graph of y = f(x).

7. Continue in this way.
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Example. Suppose our DS is An+1 = 1
2
An + 1. Choose A0 = 4. Then the

DS evolves as:
4 → 3 → 2.5 → 2.25 → 2.125 → · · · .

We connect the following sequence of points to form a cobweb:

(4, 0) → (4, 3) → (3, 3) → (3, 2.5) → (2.5, 2.5) → (2.5, 2.25) → (2.25, 2.25) → · · ·
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If A0 = 0, then the DS evolves as:

0 → 1 → 1.5 → 1.75 → 1.875 → · · · .

We connect the sequence

(0, 0) → (0, 1) → (1, 1) → (1, 1.5) → (1.5, 1.5) → (1.5, 1.75) → · · ·

The pictures indicate that for any starting point A0, An → 2 as n → ∞. It

appears that successive points are being attracted to the point (2, 2). Note
that 2 is the only fixed point. The point 2 is a an example of an attracting
fixed point.
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Example. Suppose our DS is An+1 = 2An − 1. Choose A0 = 2. Then the
DS evolves as:

2 → 3 → 5 → 9 → 17 → · · · .

We connect the following sequence of points to form a cobweb:

(2, 0) → (2, 3) → (3, 3) → (3, 5) → .5, 5) → (5, 9) → (9, 9) → · · · 2
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If A0 = 0, then the DS evolves as:

0 → −1 → −3 → −5 → −7 → · · · .

We connect the sequence

(0, 0) → (0,−1) → (−1,−1) → (−1,−3) → (−3,−3) → (−3,−7) → · · ·

The picture indicates that for any starting point A0, |An| → ∞ as n → ∞.

It appears that successive points are being repelled from the point (1, 1).
Note that 1 is the only fixed point. The point 1 is an example of a
repelling fixed point.

Roughly speaking, a fixed point c for a DS is attracting if whenever A0 is
sufficiently close to c, then An → c as n → ∞. A fixed point c is repelling
if no matter how close A0 is to c, An is eventually far away from c at
infinitely many times. There are DS which have a fixed point which is
neither attracting nor repelling.
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Problems for Section 8.

For each of the following DS An+1 = f(An), find the fixed points and use
cobwebs to determine whether each fixed point is attracting, repelling or
neither.

1. f(x) = 1
3
x + 2

2. f(x) = 3x − 2

3. f(x) = −x + 2
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9 First Order Linear Dynamical Systems

9.1 General and Particular Solutions

Consider a first order linear DS

An+1 = sAn + b. (6)

Theorem. If s 6= 1, the general solution to (6) is

An = ksn +
b

1 − s
. (7)

If s = 1, the general solution to (6) is

An = k + nb. (8)

In other words, (7) and (8) are solutions to (6) for any k and any solution
to (6) is one of these forms. If s 6= 1 and A0 is specified with an IC, then we
must have

A0 = ks0 +
b

1 − s
= k +

b

1 − s
,

so

k = A0 −
b

1 − s

and therefore

An =

(

A0 −
b

1 − s

)

sn +
b

1 − s
(9)

is the particular solution which satisfies the IC. Similarly, if s = 1 and A0 is
specified, then k = A0 and the particular solution is

An = A0 + nb.

Example. We have a bank account earning 5% interest, compounded
annually. We deposit 500 initially and also deposit 100 at the end of each
year. How much do we have after 10 years? To solve this, let An be the
amount we have after n years. Then we have the DS

An+1 = 1.05An + 100.
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We also have the IC A0 = 500. By using equation (9) with A0 = 500,
s = 1.05 and b = 100, the particular solution is

An =

(

500 − 100

(−.05)

)

(1.05)n +
100

(−.05)
= 2500(1.05)n − 2000.

We therefore have A10 = 2072.24.

Example. Suppose now that the interest in our account is compounded
monthly. If the annual rate is .12, the monthly rate is .12

12
= .01. Assume we

deposit 50 initially and deposit 10 at the end of each month. The DS for
this problem is

An+1 = (1.01) An + 10.

This is a linear DS, with s = 1.01 and b = 10. The IC is A0 = 50. Using
equation (9), the solution is

An = 1050(1.01)n − 1000.

After 10 years (120 months), we have

A120 = 1050(1.01)120 − 1000 = 2465.41.

Compare this with how much we would have with annual compounding. In
this case, the DS is

An+1 = (1.12)An + 120

and the solution is, using (9),

An =

(

50 − 120

1 − 1.12

)

(1.12)n +
120

1 − 1.12
= 1050(1.12)n − 1000,

which gives A10 = 2261.14, showing that monthly compounding is
substantially better.

Example. Suppose we win the lottery. We can take 500,000 now or 50,000
in 20 annual payments, with the first payment given now. Which payment
option leaves us with the most money at the time we get the last of the 20
payments? Assume that whenever we get a payment, we put it in an
account earning interest at a annual rate of r, compounded annually. Let
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An be the amount we have in the account after n years if we choose the
first option. Let Bn be the amount for the second option. Then we have

An+1 = (1 + r)An

with A0 = 500, 000. Therefore, An = 500, 000(1 + r)n. Also,

Bn+1 = (1 + r)Bn + B0

with B0 = 50, 000. Therefore,

Bn =

(

B0 −
B0

1 − (1 + r)

)

(1 + r)n +
B0

1 − (1 + r)
=

B0

r
((1 + r)n+1 − 1),

We get the final payment after 19 years have elapsed, so we should compare
A19 and B19. Suppose r = .05. Then A19 ≈ 1, 263, 480 and
B19 ≈ 1, 653, 300, so the second option is better. If r = .1, then
A19 ≈ 3, 057, 900 and B19 ≈ 2, 863, 750, so the first option is better.

9.2 Fixed Points

We saw in Example 2 of Section 6 that a linear system An+1 = sAn + b has
the single fixed point

b

1 − s
(10)

if s 6= 1. If s = 1 and b 6= 0, there are no fixed points. If s = 1 and b = 0,
then f(x) = x, so all points are fixed points.

If the DS is linear and f(x) = sx + b with s 6= 1, equation (6) that the
general solution is

An = ksn +
b

1 − s
.

If |s| < 1, then as n → ∞, sn → 0, so

An → b

1 − s
,

showing that the fixed point b
1−s

is attracting, since no matter what the

intial value A0 is, the terms An always approach b
1−s

. If |s| > 1, then as
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n → ∞, |sn| → ∞, so the sequence An has no finite limit. In this case, the
fixed point is repelling. If s = −1, then the DS is

An+1 = −An + b,

so
A0 → −A0 + b → A0 → −A0 + b → A0 → · · ·

showing that A0 = A2 = A4 = . . . and A1 = A3 = A5 = . . . . The sequence
An neither approaches nor gets far away from the fixed point, so the fixed
point is neither attracting nor repelling.

9.3 Discrete Market Models

In a discrete market model, prices, supply and demand are measured
only at the times t = 0, 1, 2, . . . . At time t, Pt is the price, Dt is the
demand and St is the supply. Suppose that the supply at time t is
determined by the price at time t − 1 and that the demand at time t is
determined by the price at time t. Such a situation could occur, for
example, with a farmer planting crops. The supply of the crop at time t is
determined by how much crop he plants at time t − 1 (assuming that it
takes one time period for the crop to grow, be harvested and taken to
market), and the amount he plants is determined by the market price at
time t − 1. We assume supply and demand are linear functions of price.
The equations of the market model are therefore

Dt = St

Dt = a − bPt

St = −c + dPt−1.

We assume that a, b, c, d are all positive. Substituting the second and third
equations into the first equation, we obtain

a − bPt = −c + dPt−1.

Changing t to t + 1 and rearranging gives

Pt+1 =

(

−d

b

)

Pt +
a + c

b
.
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This is a 1st order linear DS. Using (7). the general solution is

Pt = k

(

−d

b

)t

+
a + c

b + d
,

where k is an arbitrary constant. Using (10), the single fixed point is

P =
a + c

b + d
.

and we write the general solution as

Pt = k

(

−d

b

)t

+ P.

Letting t = 0 gives P0 = k + P , so that k = P0 − P and

Pt = (P0 − P )

(

−d

b

)t

+ P.

Notice that Pt → P when
(

−d

b

)t

→ 0

and this happens only when
∣
∣d

b

∣
∣ < 1. Note that if P0 = P , then Pt = P for

all t. This is to be expected since P is a fixed point.
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Problems for Section 9.

1. Find the general solution to the DS An+1 = 3An − 2. Find the particular
solution which satisfies A0 = 3.

2. Find the general solution to the DS An+1 = An + 4. Find the particular
solution which satisfies A0 = 1.

3. We make an initial deposit of 900 in our bank account. We make
additional deposits of 50 at the end of each month for the next 2 years
(24 months). The annual interest rate is .048, compounded monthly.

a. Let An be the amount in the account after n months. State the
dynamical system whose solution is the sequence An.

b. Find the general solution to the dynamical system.

c. Find the particular solution that satisfies the initial condition.

d. Use the particular solution to find the amount in the account after 2
years.

4. We deposit 200 in our account initially and then deposit 60 at the end of
each year. With an annual rate of .03, compounded annually, how much
do we have after 5 years?

5. We deposit 1000 initially and we withdraw 10 at the end of each month.
The annual rate is .06, compounded monthly (so the monthly rate is
.005). Find n so that An is positive and An+1 is negative. In other
words, how long does the money last?

6. We win a small lottery prize. We can take 1000 now or take 30 annual
payments of 45 each, the first being given now. The annual interest rate
is .02, compounded annually. Which payment option leaves us with
more money at the time of the last annual payment?
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7. Consider the discrete market model

Dt = St

Dt = 22 − 3Pt

St = −2 + Pt−1,

with P0 = 8.

a. Find a, b, c, d.

b. Find the equilibrium price P .

c. Find the sequence Pt which satisfies the model.

d. As t → ∞, is Pt converging? If so, to which number?

8. For the discrete market model

Dt = St

Dt = 7 − Pt

St = −5 + Pt−1,

with P0 = 7, answer the questions a-d from Problem 7.
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10 Second Order Dynamical Systems

A second order DS is a DS of the form

An+2 = f(An+1, An), n = 0, 1, 2, . . .

For example,
A2 = f(A1, A0) and A3 = f(A2, A1).

In order to determine A2, A3, . . . , we must be given A0 and A1. These two
values are called the initial conditions of the DS.

One class of second order DS are those of the form

An+2 = aAn+1 + bAn + c. (11)

These are the linear second order DS, and they always have solutions.

Theorem. If we are given initial conditions A0 and A1, the DS (11) has a
unique solution.

To find the general solution to DS of this form, consider the characteristic
equation

x2 = ax + b. (12)

Let r and s be the roots of (12).

Theorem. If a + b 6= 1, the general solution to (11) is

An =







c1r
n + c2s

n + c
1−a−b

, if r 6= s;

(c1 + c2n)rn + c
1−a−b

, if r = s.

If a + b = 1, the general solution to (11) is

An =







c1(a − 1)n + c2 +
(

c
2−a

)
n, if a + b = 1, a 6= 2;

c1 + c2n +
(

c
2

)
n2, if a = 2, b = −1.
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The roots of the characteristic equation could involve imaginary numbers.
For example, the roots of x2 = −1 are ±

√
−1. We will not consider

examples of this type.

Example 1. Consider the DS An+2 = −An+1 + 6An. We have a = −1,
b = 6 and c = 0, so a + b 6= 1. The characteristic equation is x2 = −x + 6.
The roots are -3 and 2. Since r 6= s, the general solution is

An = c12
n + c2(−3)n. (13)

Suppose the IC are A0 = 7, A1 = −6. We want to find c1 and c2. Letting
n = 0 in (13) gives

7 = A0 = c1 + c2.

Letting n = 1 in (13) gives

−6 = A1 = 2c1 − 3c2.

We now have the following system

7 = A0 = c1 + c2

−6 = A1 = 2c1 − 3c2.

Solving the system gives c1 = 3, c2 = 4. The particular solution is therefore

An = 3 · 2n + 4(−3)n.

Example 2. For
An+2 = 6An+1 − 9An + 2,

we have a = 6, b = −9, and c = 2, so a + b 6= 1. The characteristic equation
is

x2 = 6x − 9

which has roots r = s = 3. The general solution is

An = (c1 + c2n)3n +
1

2
.

Example 3. For
An+2 = 3An+1 − 2An + 5,
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we have a = 3, b = −2, and c = 5, so a + b = 1 and the general solution is

An = c12
n + c2 − 5n.

Example 4. For
An+2 = 2An+1 − An + 3,

a = 2, b = −1 and c = 3, so the general solution is

An = c1n + c2 +

(
3

2

)

n2.
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Problems for Section 10.

1. Find the general solution to

An+2 = 5An+1 − 6An + 8.

Find the particular solution satisfying the IC A0 = 1, A1 = 2.

2. Find the general solution to

An+2 = 2An+1 − An + 4.

Find the particular solution satisfying A0 = 3, A1 = 6.

3. Find the general solution to An+2 = 4An+1 − 4An + 4.

4. Find the general solution to An+2 = −1An+1 + 2An + 3.

5. Suppose that a + b 6= 1 and r 6= s, where r, s are the solutions to
x2 = ax + b. Show by substitution that the formula

An = c1r
n + c2s

n +
c

1 − a − b

is a solution to the DS An+2 = aAn+1 + bAn + c.

6. Suppose a = 1, b = 2, c = 3, A0 = 1, A1 = 2. Find A2 and A20, where
An+2 = aAn+1 + bAn + c.
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11 A Model for the National Economy

Let

T = total national income,

C = consumer expenditures,

I = private investment, and

G = government expenditures.

Each of these quantities is measured at discrete times n = 0, 1, 2 . . . . For
each n, we assume

Tn = Cn + In + Gn. (14)

Assume that money is spent one time period after it is earned, so that

Cn+1 = mTn, m > 0. (15)

The proportionality constant m is called the marginal propensity to
consume (MPC).

Assume that private investment is proportional to the change in
consumption, so that

In+1 = l(Cn+1 − Cn), l > 0. (16)

The constant l is called the accelerator. As consumption increases, more
factories must be built to provide more goods, and investment is needed to
build the factories.

Assume that Gn is constant. Think of this as saying that government
expenditures are constant in inflation-adjusted dollars. In addition, we will
use this constant amount Gn as our unit of money, so that

Gn = 1 (17)

and all quantities are being measured relative to Gn.

Letting n → n + 2 in (14) and using Gn+2 = 1 gives

Tn+2 = Cn+2 + In+2 + 1. (18)
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Equation (16) gives
In+2 = l(Cn+2 − Cn+1),

so (18) becomes

Tn+2 = Cn+2 + l(Cn+2 − Cn+1) + 1

= (1 + l)Cn+2 − lCn+1 + 1.
(19)

Equation (15) gives Cn+2 = mTn+1 and Cn+1 = mTn, so (19) becomes

Tn+2 = m(1 + l)Tn+1 − mlTn + 1. (20)

The second order linear DS (20) is a model for the national economy.

Example. Suppose m = 2
3

and l = 1
4
. The model is

Tn+2 =
5

6
Tn+1 −

1

6
Tn + 1.

The general solution is

Tn = c1

(
1

2

)n

+ c2

(
1

3

)n

+ 3. (21)

Suppose C0 = 3, I0 = 2. We always have G0 = 1, so

T0 = C0 + I0 + G0 = 3 + 2 + 1 = 6.

Also, C1 = 2
3
T0 = 4 and I1 = 1

4
(C1 − C0) = 1

4
, so

T1 = C1 + I1 + G1 = 4 +
1

4
+ 1 =

21

4
.

The initial conditions are therefore T0 = 6, T1 = 21
4
. To find c1 and c2, let

n = 0, 1 in (21) to get

6 = T0 = c1 + c2 + 3

21

4
= T1 =

1

2
c1 +

1

3
c2 + 3.

The solution to this linear system is c1 = 15
2
, c2 = −9

2
, so the particular

solution that satisfies the initial conditions is

Tn =
15

2

(
1

2

)n

− 9

2

(
1

3

)n

+ 3,
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After 10 time units, for example, the national income is

T10 =
15

2

(
1

2

)10

− 9

2

(
1

3

)10

+ 3 ≈ 3.00725.

As n → ∞, Tn → 3.
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Problems for Section 11.

1. Suppose the MPC is 1
2

and the accelerator is 1
6
.

a. Write the DS for this national income model.

b. Find the general solution.

c. Say C0 = 4, I0 = 5. Show that T0 = 10 and T1 = 37
6
.

d. Find the particular solution that satisfies the IC T0 = 10, T1 = 37
6
.

e. Find T8, the national income after 8 time periods.

f. Verify by substitution that your solution in d. satisfies the DS.

g. Verify by substitution that your solution in b. satisfies the DS.

65



12 Fixed Points and Stability for Second

Order Dynamical Systems

12.1 Fixed Points

Definition. A fixed point of a second order DS is a number k so that if
An = k for n = 0, 1, 2, . . . , then An is a solution to the DS.

Consider the second order linear DS

An+2 = aAn+1 + bAn + c.

Suppose that a + b 6= 1. If k is a fixed point, then An+2 = An+1 = An = k

for all n, so k = ak + bk + c and

k =
c

1 − a − b
.

If a + b = 1, then the DS is

An+2 = aAn+1 + (1 − a)An + c.

If k is a fixed point, then

k = ak + (1 − a)k + c = k + c

which has a solution if and only if c = 0. There-
fore, there are no fixed points if c 6= 0 and every point is a fixed point if c = 0.

12.2 Stability

Definition. The second order linear DS is stable if limn→∞ An exists for
all initial conditions. The DS is unstable if limn→∞ |An| = ∞ for some
initial conditions.

There exist DS which are neither stable nor unstable.
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12.3 The case a + b 6= 1

There is a unique fixed point in this case. If the An approach the fixed
point for all possible initial conditions, the system is stable and we say that
the fixed point is attracting. If |An| → ∞ for some initial conditions, then
the system is unstable and we say that the fixed point is repelling. It is
also possible that neither one of these two behaviors is present.

Example 1. If the DS is

An+2 =
5

6
An+1 −

1

6
An + 1,

then the fixed point is 3 and the general solution is

An = c1

(
1

2

)n

+ c2

(
1

3

)n

+ 3.

As n → ∞,
(

1
2

)n → 0 and
(

1
3

)n → 0, so An → 3. The fixed point is
attracting and the system is stable.

Example 2. If the DS is

An+2 = 5An+1 − 6An + 2,

then the fixed point is 1 and the general solution is

An = c12
n + c23

n + 1.

As n → ∞, 2n → ∞ and 3n → ∞, so An → ∞ if c1 or c2 is nonzero. The
fixed point is repelling and the system is unstable.

Example 3. If the DS is

An+2 =
5

2
An+1 − An + 2,

then the fixed point is −4 and the general solution is

An = c1

(
1

2

)n

+ c22
n +

4

5
.
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As n → ∞,
(

1
2

)n → 0 and 2n → ∞, so An → ∞ if c2 6= 0. The fixed point is
repelling and the system is unstable.

Example 4. If the DS is

An+2 = −1

2
An+1 +

1

2
An + 1,

then the fixed point is 1 and the general solution is

An = c1

(
1

2

)n

+ c2 (−1)n + 1.

As n → ∞,
(

1
2

)n → 0 and (−1)
n

alternates between −1 and 1, so the An

have no limit as n → ∞ if c2 6= 0. Also, |An| 6→ ∞, so the system is neither
stable nor unstable.

Example 5. If the DS is

An+2 = An+1 −
1

4
An + 1,

then the fixed point is 4 and the general solution is

An = (c1 + c2n)

(
1

2

)n

+ 4.

As n → ∞, An → 0, so the system is stable.

Given any particular problem, first calculate the fixed point. Then find the
general solution and examine its behavior as n → ∞ to determine if the
system is stable and the fixed point is attracting (or not). The general case
of a + b 6= 1 is treated in the appendix to Section 12.

12.4 The case a + b = 1

We are not concerned with fixed points being attracting or repelling in this
case and examine only the long term behavior of the general solution An.
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Example 6. If the DS is

An+2 = 6An+1 − 5An,

then the general solution is

An = c15
n + d.

If c1 6= 0, then |An| → ∞, so the system is unstable.

Example 7. If the DS is

An+2 = 2An+1 − An + 6,

then the general solution is

An = c1 + c2n + 3n2.

The system is unstable since |An| → ∞.

Example 8. If the DS is
An+2 = An,

the general solution is
An = c1(−1)n + c2.

and the system is neither stable nor unstable.

Examle 9. If the DS is

An+2 =
3

2
An+1 −

1

2
An,

the general solution is

An = c1

(
1

2

)n

+ c2

and the system is stable.

The general case of a + b = 1 is treated in the Appendix to Section 12.
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Problems for Section 12.

1. For each of the following DS, find the fixed points and discuss the
stability of the system.

a. An+2 = 4An+1 − 4An + 4

b. An+2 = −2
3
An+1 + 1

3
An + 1

c. An+2 = 2An+1 − 63
64

An + 1
64

d. An+2 = −2An+1 − An + 2

e. An+2 = 1
2
An+1 − 3

64
An + 35

f. An+2 = 7An+1 − 12An + 6

g. An+2 = 2
3
An+1 − 1

9
An + 4

2. This problem concerns the case a + b = 1. For each example, determine
if there are fixed points and discuss the stability of the system.

a. An+2 = 3An+1 − 2An

b. An+2 = An+1 + 2

c. An+2 = An

d. An+2 = 1
3
An+1 + 2

3
An

e. An+2 = 2An+1 − An + 2

f. An+2 = 2An+1 − An

3. Show that if a + b 6= 1 and r is a root of the characteristic equation
x2 = ax + b, then r 6= 1.
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Appendix to Section 12

Now we address the general situation. First, assume that a + b 6= 1 and the
roots r, s satisfy r 6= s. The general solution is

An = c1r
n + c2s

n +
c

1 − a − b
.

There are various cases that must be considered.

Case 1. If |r| < 1 and |s| < 1, then rn → 0 and sn → 0 as n → ∞, so

An → c

1 − a − b

for all initial conditions. The fixed point is attracting and the system is
stable.

Case 2. If |r| > 1 or |s| > 1, then |An| → ∞ as n → ∞ for some initial
conditions, so the fixed point is repelling and the system is unstable.

Case 3. Suppose |r| < 1 and |s| = 1, as in Example 4. Since we are
assuming that s is a real number, we must have s = ±1. But a + b 6= 1
implies that s 6= 1 (see Problem 3), so s = −1 and the general solution is

An = c1r
n + c2(−1)n +

c

1 − a − b
.

As n → ∞, rn → 0 and (−1)n = ±1, so the An have no limit as n → ∞ if
c2 6= 0. Also, |An| 6→ ∞, so the system is neither stable nor unstable.

Case 4. Suppose |r| = |s| = 1, still with r 6= s. From equation (??), we
have a + b = r + s − rs. Since r 6= s, (r, s) = (1,−1) or (r, s) = (−1, 1). In
each of these cases, we have a + b = 1, which is false. Therefore, this case
cannot arise.

Now suppose that a + b 6= 1 and r = s. The general solution is

An = (c1 + c2n)rn +
c

1 − a − b
.

Again, various cases can arise.
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Case 5. If |r| < 1, then rn → 0 and nrn → 0 (by L’Hopital’s Rule), so

An → c

1 − a − b

for all initial conditions. The fixed point is attracting and the system is
stable.

Case 6. If |r| > 1, then |rn| → ∞ and |nrn| → ∞, so |An| → ∞ unless
c1 = c2 = 0. The fixed point is repelling and the system is unstable.

Case 7. Suppose r = ±1. If r = s = 1, then from equation (??), a + b = 1,
which is false. Therefore, r = s = −1. The general solution is

An = (c1 + c2n)(−1)n +
c

1 − a − b
.

If c2 6= 0, then |An| → ∞, so the the fixed point is repelling and the system
is unstable.

Now assume a + b = 1. There are various cases to consider.

Case 8. Suppose a 6= 2 and c = 0. The general solution is

An = c1(a − 1)n + c2.

If |a − 1| < 1, then An → c2 so the system is stable. If |a − 1| > 1 and
c1 6= 0, then |An| → ∞, so the system is unstable. If |a − 1| = 1, then a = 0
and An = c1(−1)n + c2. The system is neither stable nor unstable.

Case 9. Suppose a 6= 2 and c 6= 0. The general solution is

An = c1(a − 1)n + c2 +

(
c

2 − a

)

n.

Since |An| → ∞, the system is unstable.

Case 10. Suppose a = 2, b = −1. The general solution is

An = c1 + c2n +
( c

2

)

n2.

If c2 6= 0, then |An| → ∞, so the system is unstable.
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13 Stability of Economic Systems

13.1 Discrete Market Models

Recall from Section 9.3 that a discrete market model is given by

Dt = St

Dt = a − bPt

St = −c + dPt−1,

where a, b, c, d are positive. Pt is the equilibrium price at time
t = 0, 1, 2, . . . . The model leads to the first order DS

Pt+1 =

(

−d

b

)

Pt +
a + c

b
,

which has the general solution

Pt = k

(

−d

b

)t

+ P,

where

P =
a + c

b + d

is the fixed point. If d
b

< 1, then Pt → P as t → ∞ and the system is
stable. If d

b
> 1, then |Pt| → ∞ and the system is unstable. If d

b
= 1, the

system oscillates. These models are easy to understand since there is a
simple criteria for convergence in terms of b and d.

Example. Suppose the market is unstable and we would like to convert it
to a stable market. The parameters a and c do not affect whether the
market is stable or not. To achieve stability, we can either increase b or
decrease d (or both) until d

b
is less than one. We might do this by

convincing consumers to be more sensitive to price, which would increase b,
or by offering incentives to decrease supply at a given price level, which
would decrease d.

Example. Suppose that we control the market to the extent that we can
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set the parameters to be whatever we like. Suppose we want the
equilibrium prices Pt to converge to 3 as t → ∞. How should we choose
a, b, c and d? We must have

P =
a + c

b + d
= 3,

and to have convergence, we need d
b

< 1. If we choose b = 2, d = 1 to have
convergence, then we need a+c

3
= 3, or a + c = 9. We could choose

a = 5, c = 4, and then we have the system

Dt = St

Dt = 5 − 2Pt

St = −4 + Pt−1

that behaves in the desired way.

13.2 National Income Models

Deciding which choice of parameters leads to convergence is more
complicated for the second order DS arising from the model for the national
economy:

Tn+2 = m(1 + l)Tn+1 − mlTn + 1,

where m is the MPC and l is the accelerator. Another problem is that
certain choices of m and l lead to imaginary roots of the characteristic
equation. We will not deal with imaginary roots.

Example. Suppose we want the national income to converge to 5 as
n → ∞. How should we choose m and l? To have a fixed point of 5, we
need

1

1 − m(1 + l) + ml
= 5,

which simplifies to 1
1−m

= 5, or m = 4
5
. We will have convergence if the

roots of the characteristic equation

x2 − 4

5
(1 + l)x +

4

5
l = 0
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satisfy |r| < 1, |s| < 1. The roots are given by

s =
1

2

(

4

5
(1 + l) −

√

16

25
(1 + l)2 − 16

5
l

)

,

r =
1

2

(

4

5
(1 + l) +

√

16

25
(1 + l)2 − 16

5
l

)

.

If we choose l = 1
5
, for example, then the roots are s = 6

25
and r = 18

25
. With

m = 4
5

and l = 1
5
, we have Tn → 5 as n → ∞. Now let us find all the

choices for l that lead to real roots r 6= s with |r| < 1 and |s| < 1 when
m = 4

5
. The roots are real and distinct when

16

25
(1 + l)2 − 16

5
l > 0,

which is equivalent to l2 − 3l + 1 > 0. This inequality holds when l is not in
the interval [

3 −
√

5

2
,
3 +

√
5

2

]

≈ [.381, 2.61].

Now we determine which l not in this interval lead to a stable system.
Choose r, s so that |r| > |s|. It is then sufficient to show that |r| < 1. If

l > 3+
√

5
2

, then

|r| =
1

2

(

4

5
(1 + l) +

√

16

25
(1 + l)2 − 16

5
l

)

>
2

5
(1 + l) > 1.

Now assume 0 < l < 3−
√

5
2

. Then |r| < 1 if and only if

√

16

25
(1 + l)2 − 16

5
l < 2 − 4

5
(1 + l) =

6

5
− 4

5
l,

which, after squaring both sides and simplifying, is equivalent to 16 < 36,
which is true. This shows that all l such that 0 < l < 3−

√
5

2
lead to a stable

system when m = 4
5
.
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Now we turn to the general case for m > 0, l > 0. The characteristic
equation for the national income model is

x2 − (m + l)x + ml = 0.

The roots are

x =
1

2

(

m(1 + l) ±
√

m2(1 + l)2 − 4ml
)

.

The roots are real when

m2(1 + l)2 − 4ml ≥ 0,

which is equivalent to

m ≥ 4l

(1 + l)2
.

Consider the curve in the l − m plane given by the equation

m =
4l

(1 + l)2
.

0.5 1.0 1.5 2.0 2.5 3.0

l

0.5

0.6

0.7

0.8

0.9

1.0

m
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A point (l, m) in the first quadrant leads to real roots when (l, m) lies on or
above the curve.

Theorem. If (l, m) lies in the first quadrant and m ≥ 4l
(1+l)2

then the model
is stable if and only if l < 1 and m < 1.

Proof. See the Appendix to Section 13.

In particular, the system is unstable if m ≥ 1, regardless of the value of l.
By equation (15) in Section 11, this occurs if the consumption at any time
is greater than or equal to the income at the previous time. If m < 1, the
system is stable for some l > 1, but the only cases for which this occurs
have imaginary roots. If m < 1, the system is unstable if

l ≥ 2

m
− 1 +

2

m

√
1 − m. (22)

This shows that if investment is too large a multiple of the change in
consumption, then the system is unstable.
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Problems for Section 13.

1. Give an example of a discrete market model in which the equilibrium
prices converge to 5.

2. We have a national income model with l = 1
2
.

a. Which values of m lead to distinct real roots?

b. Which values of m lead to distinct real roots and a convergent
system?

3. We have a national income model with m = 1
2
.

a. Show that we obtain distinct real roots if l is not in the interval
[3 − 2

√
2, 3 + 2

√
2].

b. Show that if 0 < l < 3 − 2
√

2, then the system is stable.

c. Show that if l > 3 + 2
√

2, then the system is unstable.

4. Suppose that m = 1
3
. Which values of l produce a stable system with

real roots?

5. Show that the system is unstable if m < 1 and

l ≥ 2

m
− 1 +

2

m

√
1 −m.
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Appendix to Section 13

Using the notation of equation (11) in Section 10, we have a = m(1 + l) and
b = −ml, so a + b = m.

Theorem. If (l, m) lies in the first quadrant and m = 4l
(1+l)2

then the model
is unstable.

Proof. If m 6= 1, the general solution is

Tn = (c1 + c2n)

(
2l

1 + l

)n

+
1

1 − m
.

If c2 6= 0, then |Tn| → ∞, so the model is unstable. If m = 1, then l = 1, so
a = m(1 + l) = 2 and the general solution is

Tn = c1 + c2n +
1

2
n2.

Since |Tn| → ∞, the model is unstable.

Assume now that m > 4l
(1+l)2

. This gives distinct real roots r, s. Assume

r =
1

2

(

m(1 + l) +
√

m2(1 + l)2 − 4ml
)

, s =
1

2

(

m(1 + l) −
√

m2(1 + l)2 − 4ml
)

,

so that 0 < s < r.

Lemma 1. If m > 4l
(1+l)2

and m = 1, the model is unstable.

Proof. If m = 1, then a + b = 1 and a − 1 = l < 1 so the general solution is

Tn = c1l
n + c2 +

n

1 − l
,

and the model is unstable since n
1−l

→ ∞.

Lemma 2. If m > 4l
(1+l)2

and m 6= 1, the model is unstable if r > 1.

Proof. If m 6= 1, the general solution is

Tn = c1r
n + c2s

n +
1

1 − m
,

so if r > 1, then |Tn| → ∞ if c1 6= 0.
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Lemma 3. If m > 4l
(1+l)2

and l > 1, then r > 1.

Proof.

r =
1

2

(

m(1 + l) +
√

m2(1 + l)2 − 4ml
)

>
m(1 + l)

2
>

4l

(1 + l)2

1 + l

2
=

2l

1 + l
> 1

since l > 1.

Lemma 4. Assume m > 4l
(1+l)2

. Then

(1) if m(1 + l) ≥ 2, then r > 1.

(2) if m(1 + l) < 2, then m < 1 ⇐⇒ r < 1, and m > 1 ⇐⇒ r > 1.

Proof.

(1) m(1 + l) ≥ 2 =⇒ m(1 + l) +
√

m2(1 + l)2 − 4ml > 2 =⇒ r > 1.

(2) Since 2 − m(1 + l) > 0,

r < 1 ⇐⇒ m(1 + l) +
√

m2(1 + l)2 − 4ml < 2

⇐⇒
√

m2(1 + l)2 − 4ml < 2 −m(1 + l)

⇐⇒ m2(1 + l)2 − 4ml < 4 − 4m(1 + l) + m2(1 + l)2 ⇐⇒ m < 1.

Similarly, r > 1 ⇐⇒ m > 1.

Theorem. If (l, m) lies in the first quadrant and m > 4l
(1+l)2

then the model
is stable if and only if m < 1 and l < 1.

Proof. If m = 1, the model is unstable by Lemma 1. If l > 1, the model is
unstable by Lemma 3. Assume now that m 6= 1 and l ≤ 1. If l = 1 then
m > 1, so m(1 + l) > 2 and the model is unstable by (1) of Lemma 4. If
m < 1 and l < 1, then m(1 + l) < 2 so by (2) of Lemma 4, the model is
stable. Suppose m > 1 and l < 1. Then if m(1 + l) ≥ 2, (1) of Lemma 4
shows that the model is unstable. If m(1 + l) < 2, then m > 1 implies r > 1
by (2) of Lemma 4, so the model is unstable.
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14 Critical Points and Second Derivative

Test for Functions of Several Variable

Let R
n be the set of all points P = (x1, . . . , xn), with each xi a real number.

R
n is called n-dimensional space. Consider a function of n variables

f(P ) = f(x1, . . . , xn). For each P , f(P ) is a real number. For example,

f(x, y) = x2y − xy3

is a function of two variables, and

f(x, y, z, w) = 3xyzw

is a function of four variables. We will assume that our functions are nicely
behaved and satisfy all necessary assumptions. Let

fi(P ) =
∂f

∂xi

(P ), i = 1, 2, . . . , n.

This is the partial derivative of f with respect to the i-th variable xi,
evaluated at the point P . We will also write fxi

(P ) = fi(P ). This derivative
is calculated by fixing all the variables other than xi and differentiating
with respect to xi. For example, if f(x, y, z) = x2y + 2xyz, then

fx(x, y, z) = f1(x, y, z) = 2xy + 2yz,

fy(x, y, z) = f2(x, y, z) = x2 + 2xz,

fz(x, y, z) = f3(x, y, z) = 2xy.

Theorem. If f has a local maximum or a local minimum at a point P in
R

n, then
fi(P ) = 0, i = 1, 2, . . . , n. (23)

A point P that satisfies the conditions (23) is called a critical point of f .
There may exist critical points where f does not have a local extrema. For
example, if f(x) = x3, then 0 is a critical point but is not a local extrema
for f . To locate the local extrema, we should find the critical points and
then check each one using the second derivative test.

The second derivatives are defined by

fij(P ) =
∂

∂xj

(
∂f

∂xi

)

(P ), i, j = 1, 2, . . . , n.
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We will also write fxixj
(P ) = fij(P ). For example if f(x, y, z) = x2y + 2xyz

as above, then

fxx(x, y, z) = f11(x, y, z) = 2y,

fxy(x, y, z) = f12(x, y, z) = 2x + 2z,

fyx(x, y, z) = f21(x, y, z) = 2x + 2z, etc.

Note that f12 = f21. In general, we will have fij = fji for our nicely
behaved functions.

Recall the second derivative test for functions of two variables f(x, y).

Second Derivative Test (n=2). Suppose that (a, b) is a critical point of
f(x, y). Let

D(a, b) = fxx(a, b)fyy(a, b) − fxy(a, b)2. (24)

Then

1. If D(a, b) > 0 and fxx(a, b) > 0, then f has a local min at (a, b).

2. If D(a, b) > 0 and fxx(a, b) < 0, then f has a local max at (a, b).

3. If D(a, b) < 0, then f has neither a local max nor a local min at (a, b).
Such a critical point is called a saddle point.

If D(a.b) = 0, the test gives no information; there could be a local max, a
local min or a saddle point at (a, b). Note that since fxy = fyx, we could
also write

D(a, b) = fxx(a, b)fyy(a, b)− fxy(a, b)fyx(a, b). (25)

For a function of n variables, we have the n2 second partial derivatives

fij(P ), i, j = 1, 2, . . . , n.

We form the n × n Hessian matrix of second derivatives

H(P ) =






f11(P ) . . . f1n(P )
...

...
fn1(P ) . . . fnn(P )




 .
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Consider the following square submatrices of H(P ):

H1(P ) =
[
f11(P )

]
, H2(P ) =

[
f11(P ) f12(P )
f21(P ) f22(P )

]

,

H3(P ) =





f11(P ) f12(P ) f13(P )
f21(P ) f22(P ) f23(P )
f31(P ) f32(P ) f33(P )



 , . . . , Hn(P ) = H(P ).

Let dk be the determinant |Hk(P )|. dk is called the k-th principal minor
of H(P ). Note that dn = |H(P )|.

Second Derivative Test. Suppose that P is a critical point of
f(x1, . . . , xn). Assume first that dn 6= 0. Then

(1) If dk > 0 for k = 1, 2, . . . , n, then f has a local minimum at P .

(2) If dk < 0 for k odd and dk > 0 for k even, then f has a local maximum
at P .

(3) If neither (1) nor (2) holds, then f has a saddle point at P . (A saddle
point is a critical point which is neither a local max nor a local min, just as
for n = 2).

If dn = 0, then the test provides no information.

Note that if we let n = 2, the general Second Derivative Test reduces to the
special case stated earlier, since d1 = fxx(a, b) and d2 = D(a, b).

Example. Let f(x, y) = x2 + xy + y2 + 2x − 2y + 5. Then

fx(x, y) = 2x + y + 2, fy(x, y) = x + 2y − 2.

The only critical point is (−2, 2). The Hessian is

H(x, y) =

[
fxx fxy

fyx fyy

]

=

[
2 1
1 2

]

.

H1(−2, 2) = [2] and

H2(−2, 2) =

[
2 1
1 2

]

.
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We have d1 = 2 and d2 = 3, so (−2, 2) gives a local minimum.

Example. Let f(x, y, z) = x3 + xy2 + x2 + y2 + 3z2. Then
fx = 3x2 + y2 + 2x, fy = 2xy + 2y and fz = 6z. The critical points are
(0, 0, 0) and (−2

3
, 0, 0). The Hessian is

H(x, y, z) =





6x + 2 2y 0
2y 2x + 2 0
0 0 6



 .

Therefore,

H(0, 0, 0) =





2 0 0
0 2 0
0 0 6



 .

We have d1 = 2, d2 = 4 and d3 = 24, so (0, 0, 0) gives a local minimum.
Also,

H

(

−2

3
, 0, 0

)

=





−2 0 0
0 2

3
0

0 0 6



 .

We have d1 = −2, d2 = −4
3

and d3 = −24
3
, so (−2

3
, 0, 0) gives a saddle point.
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Problems for Section 14.

1. For each of the following functions, find the critical points and classify
each critical point as a local max, local min or saddle point.

a. f(x, y) = 2xy − 2x2 − 5y2 + 4y − 3

b. f(x, y) = x2 + y3 − 6xy + 3x + 6y

c. f(x, y) = e−y(x2 − y2)

d. f(x, y, z) = x2 + y2 + 2z2 + xz

e. f(x, y, z) = xy + xz + 2yz + 1
x
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15 Economic Applications

Example 1. Suppose a company sells two products in competitive
markets. The company decides how many of each product they will
produce, but they have no control over the price For i = 1, 2, let

Qi = the number of units produced of product i

Pi = the price per unit of product i

Ri = PiQi = the revenue from product i

R = R1 + R2 = total revenue

C = cost of production

π = R − C = profit

Assume that
C = 2Q2

1 + Q1Q2 + 2Q2
2.

Then
π = P1Q1 + P2Q2 − 2Q2

1 − Q1Q2 − 2Q2
2.

Assume the prices are fixed, so that the profit is a function of Q1 and Q2,
written as π(Q1, Q2). The company wishes to choose the values of Q1 and
Q2 which maximize their profit. To maximize the profit function, we must
find the critical points and test them to see which provides a maximum.
We have

π1 = πQ1
= P1 − 4Q1 − Q2,

π2 = πQ2
= P2 −Q1 − 4Q2.

Setting each of the partial derivatives equal to zero gives the system of
equations

4Q1 + Q2 = P1

Q1 + 4Q2 = P2.

The solution to the system is

Q1 =
4P1 − P2

15
, Q2 =

4P2 − P1

15
.
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To test the critical point, we take the second derivatives. We have
π11 = −4, π12 = −1 and π22 = −4. The Hessian is

H =

[
−4 −1
−1 −4

]

,

so d1 = −4 and d2 = 15. The second derivative test shows that the critical
point is a local maximum, and it can be shown that it is also an absolute
maximum.

Example 2. Suppose we have a company that produces one product. They
sell the product in two markets and have a monopoly in both markets.
They are therefore free to charge whatever price they wish. As usual, let

Qi = the number of units produced for market i

Pi = the price per unit in market i

Ri = PiQi = the revenue from market i

We assume that Q1 = −3P1 + 30 and Q2 = −2P2 + 20 and that the cost of
production is C = 5Q1 + 6Q2. We would like to maximize the profit
π = R1 + R2 − C . We have

P1 = 10 − 1

3
Q1 and P2 = 10 − 1

2
Q2.

Therefore the profit is

π = P1Q1 + P2Q2 − C

= (10 − 1

3
Q1)Q1 + (10 − 1

2
Q2)Q2 − 5Q1 − 6Q2

= 5Q1 −
1

3
Q2

1 + 4Q2 −
1

2
Q2

2.

To find the critical points of π, we take the partial derivatives and obtain

π1 = 5 − 2

3
Q1 and π2 = 4 − Q2.

Setting these each to zero gives the one critical point (15
2
, 4). The Hessian

matrix is

H =

[
−2

3
0

0 −1

]

.
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Taking determinants gives d1 = −2
3
, d2 = 2

3
. Since d1 < 0 and d2 > 0, the

critical point is a local maximum.

Example 3. Suppose we have a company that produces 2 products which
are sold in the same market. The company has a monopoly and may charge
whatever price they wish. Let

Qi = the number of units produced of product i

Pi = the price per unit of product i

Ri = PiQi = the revenue from product i

Assume that

Q1 = 40 − 2P1 + P2 and Q2 = 15 + P1 − P2. (26)

Assume the cost of production is C = Q2
1 + Q1Q2 + Q2

2. Solving the system
(26) for P1 and P2 gives

P1 = 55 − Q1 −Q2 and P2 = 70 −Q1 − 2Q2.

Therefore, the profit is

π = P1Q1 + P2Q2 −C

= 55Q1 + 70Q2 − 3Q1Q2 − 2Q2
1 − 3Q2

2.

There is one critical point (8, 23
3
). The Hessian matrix is

H =

[
−4 −3
−3 −6

]

.

The determinants are d1 = −4, d2 = 15. The critical point is a local
maximum.
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Problems for Section 15.

1. Using the notation of the above discussion, assume that P1 = 5, P2 = 10
and C = 2Q2

1 + 3Q2
2 + 10. How many units of each product should the

company produce so as to maximize their profit?

2. Again using the notation of the above discussion, assume that P1 = 3,
P2 = 6 and C = 2Q2

1 + Q1Q2 + 4Q2
2 + 20. How many units of each

product should the company produce so as to maximize their profit?

3. Suppose a company sells one product in 2 markets. For i = 1, 2, let

Qi = the number of units produced for market i

Pi = the price per unit in market i

Ri = PiQi = the revenue from market i

C = cost of production

Assume Q1 = −2P1 + 40, Q2 = −3P2 + 48, C = 10(Q1 + Q2).

a. Suppose we decide to sell only in market 1. How many units should
we produce to maximize our revenue? What is the maximum
revenue? How many units should we produce to maximize our
profit? What is the maximum profit? (You should use the second
derivative test to be sure you are getting a maximum.)

b. Suppose we decide to sell only in market 2. What is the maximum
profit?

c. Suppose we decide to sell in both markets at the same time. How
many units should we produce for each market to maximize our total
profit? What is the maximum profit? (Don’t just assume your
answer is the sum of the answers from a and b.)
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4. Suppose a company sells one product in 3 markets. For i = 1, 2, 3, let

Qi = the number of units produced for market i

Pi = the price per unit in market i

Ri = PiQi = the revenue from market i

C = cost of production

Assume Q1 = −3P1 + 90, Q2 = −2P2 + 60, Q3 = −2P3 + 90 and
C = 4Q1 + 6Q2 + 9Q3. Find and classify the critical points for the profit
function π(Q1, Q2, Q3).

5. Assume Q1 = −3P1 + 60, Q2 = −2P2 + 50, Q3 = −2P3 + 100 and
C = Q1Q2 + 2Q1Q3 + 3Q2Q3. Find and classify the critical points for
the profit function π(Q1, Q2, Q3).
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16 Lagrange Multipliers.

Suppose that if we buy x units of product 1 and y units of product 2, then
the utility we receive is

f(x, y) = xy + 2x + 2y. (27)

Each unit of product 1 costs $1 and each unit of product 2 costs $3. We
have only $10 to spend, so we must have

x + 3y = 10. (28)

The goal is to maximize our utility. One method is to write x = 10 − 3y
and substitute this in (27) to get

f(x, y) = (10 − 3y)y + 2(10 − 3y) + 2y = −3y2 + 6y + 20.

This is a function of only one variable which we denote by φ(y). We have

φ′(y) = −6y + 6,

so the only critical point of φ(y) is y = 1, and φ has a maximum there. If
y = 1, then x = 7 and f(x, y) has a maximum value of f(7, 1) = 23.

We can also solve our problem using the method of Lagrange
multipliers. Suppose we have a function f(x, y) which is restricted to a
curve g(x, y) = c. The curve g(x, y) = c is called a constraint. A point
(x, y) which is a local maximum or a local minimum for f(x, y) restricted to
g(x, y) = c is called a constrained extremum.

Theorem. Suppose that f(x, y) restricted to g(x, y) = c has an extremum
at a point (x, y) where ∇g(x, y) 6= 0. Then

∇f(x, y) = λ∇g(x, y) (29)

for some λ.

The points (λ, x, y) which satisfy (29) are called constrained critical
points.

Applying this method to the example above, we see that

∇f(x, y) = (y + 2, x + 2), ∇g(x, y) = (1, 3),
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so (29) becomes
(y + 2, x + 2) = λ(1, 3).

x and y must also satisfy x + 3y = 10, so we obtain the system of equations

y + 2 = λ

x + 2 = 3λ

x + 3y = 10.

This system has the solution

(λ, x, y) = (3, 7, 1). (30)

We now know that if there is a constrained extremum for f(x, y), then it
must occur at (x, y) = (7, 1). It still must be verified that this point leads
to a maximum.

We can generalize this approach to the case where f : R
n → R is a function

of x = (x1, . . . , xn). We subject f to k constraints

g1(x) = c1

g2(x) = c2

...

gk(x) = ck.

Theorem. Suppose k < n. Let S be the set of all points x in R
n where

g1(x) = c1, . . . , gk(x) = ck.

If f has an constrained extremum at a point x0 where ∇g1(x0), . . . ,∇gk(x0)
are linearly independent vectors, then there are scalars λ1, . . . , λk such that

∇f(x0) = λ1∇g1(x0) + · · · + λk∇gk(x0).

Example 1. Let C consist of all the points in R
3 which lie on both the

cone z2 = x2 + y2 and the plane z = x + y + 2. A picture indicates that C

consists of two separate pieces. One piece lies on the part of the cone which
is above the x − y plane; the other piece lies below the x − y plane. We
want to find the points in C which are closest to the origin and the points
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in C which are farthest from the origin. We therefore want to find the
extreme values of the function f(x) = dist(x, 0), with x = (x, y, z). It is
easier to find the extreme values of

φ(x) = f(x)2 = x2 + y2 + z2.

We also have the two constraints

g1(x, y, z) = x2 + y2 − z2 = 0, g2(x, y, z) = x + y − z = −2.

We have

∇g1(x, y, z) = (2x, 2y,−2z), ∇g2(x, y, z) = (1, 1,−1). (31)

The equation ∇φ = λ1∇g1 + λ2∇g2 is

(2x, 2y, 2z) = λ1(2x, 2y,−2z) + λ2(1, 1,−1). (32)

Equation (32) and the two constraint equations (31) produce the system

2x = 2λ1x + λ2

2y = 2λ1y + λ2

2z = −2λ1z − λ2

x2 + y2 − z2 = 0

x + y − z = −2.

(33)

We get two possible extrema from the solutions. They are

x1 = (−2+
√

2,−2+
√

2,−2+2
√

2), x2 = (−2−
√

2,−2−
√

2,−2−2
√

2).

We will show below that these are both constrained minima.
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Second Derivative Test for Constrained Extrema.

f : R
n → R is a function of x = (x1, . . . , xn). Supppose that k < n and we

have k constraints

g1(x) = c1

g2(x) = c2

...

gk(x) = ck.

Assume that x0 and λ = (λ1, . . . , λk) satisfy

∇f(x0) = λ1∇g1(x0) + · · · + λk∇gk(x0).

The pair of vectors (λ,x0) is called a constrained critical point. We can
formulate a second derivative test for constrained critical points by
considering the Lagrangian. This is a function of n + k variables defined
by

L(λ1, . . . , λk, x1, . . . , xn) = f(x1, . . . , xn) −
k∑

i=1

λi(gi(x1, . . . , xn) − ci).

We construct the Hessian matrix of this function and evaluate it at the
constrained critical point (λ,x0). We obtain the (n + k) × (n + k) matrix

HL(λ,x0) =























0 · · · 0 − ∂g1

∂x1

(x0) · · · − ∂g1

∂xn
(x0)

...
. . .

...
...

. . .
...

0 · · · 0 − ∂gk

∂x1

(x0) · · · − ∂gk

∂xn
(x0)

− ∂g1

∂x1

(x0) · · · − ∂gk

∂x1

(x0) h11 · · · h1n

...
. . .

...
...

. . .
...

− ∂g1

∂xn
(x0) · · · − ∂gk

∂xn
(x0) hn1 · · · hnn























(34)
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where

hij =
∂2f

∂xj∂xi

(x0) − λ1
∂2g1

∂xj∂xi

(x0) − λ2
∂2g2

∂xj∂xi

(x0) − · · · − λk

∂2gk

∂xj∂xi

(x0).

This matrix is sometimes called the bordered Hessian.

Note that the constrained critical points (λ,x0) which satisfy

∇f(x) = λ1∇g1(x) + · · · + λk∇gk(x). (35)

are the same as the critical points of the Lagrangian
L(λ1, . . . , λk, x1, . . . , xn). If you are planning to test the constrained critical
points with the second derivative test, then you should find the constrained
critical points by solving ∇L = 0 rather than solving (35). If you solve
(35), then you still need to calculate the partial derivatives of L before
constructing the Hessian of L, so you end up calculating the partials of f

and the gi twice.

For j = 1, . . . , n + k, let Hj be the j × j submatrix in the upper left corner
of HL(λ,x0). Let dj = |Hj |. Calculate the following sequence of numbers:

{(−1)kd2k+1, (−1)kd2k+2, . . . , (−1)kdk+n}. (36)

Assume dk+n 6= 0. Then

(i) If the sequence in (36) consists entirely of positive numbers, then f has
a constrained local minimum at x0.

(ii) If the sequence in (36) alternates as negative, positive, negative, . . . ,
then f has a constrained local maximum at x0.

(iii) If neither case (i) nor case (ii) holds, then f has a constrained saddle
point at x0.

If dk+n = 0, then the test fails.

The sequence in (36) consists of the first term (−1)kd2k+1, the last term
(−1)kdk+n and all the terms in between the two. The first term may equal
the last term, in which case the sequence consists of only one term.
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Example 2.

a. If n = 2 and k = 1, then 2k + 1 = 3 and n + k = 3, so the sequence
consists only of the term {−d3}.

b. If n = 3 and k = 1, then 2k + 1 = 3 and n + k = 4, so the sequence
consists of {−d3,−d4}.

c. If n = 3 and k = 2, then
2k+1 = 5 and n+k = 5, so the sequence consists only of the term {d5}.

Example 3. Consider again f(x, y) = xy + 2x + 2y with the constraint
x + 3y = 10. The Lagrangian is

L(l, x, y) = f(x, y)− l(g(x, y)− c) = xy + 2x + 2y − l(x + 3y − 10). (37)

To construct the matrix in (34), we take the second partial derivatives of
(37) to get

HL(l, x, y) =





0 −1 −3
−1 0 1
−3 1 0



 . (38)

Recall (30) that the only constrained critical point is (λ, x, y) = (3, 7, 1).
Substituting this in (38) gives

HL(3, 7, 1) ==





0 −1 −3
−1 0 1
−3 1 0



 .

The sequence (36) is −d3 = −6, showing that (x, y) = (7, 1) gives a
constrained local maximum of f .

Example 4. Consider again Example 1. From (33), we get the two
constrained critical points

(λ1,x1) = (2
√

2 − 3, 16
√

2 − 24,
√

2 − 2,
√

2 − 2, 2
√

2 − 2)

and

(λ2,x2) = (−2
√

2 − 3,−16
√

2 − 24,−
√

2 − 2,−
√

2 − 2,−2
√

2 − 2).
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The Lagrangian is

L(l, m, x, y, z) = x2 + y2 + z2 − l(x2 + y2 − z2) − m(x + y − z + 2)

and the Hessian is

HL(l, m, x, y, z) =









0 0 −2x −2y 2z
0 0 −1 −1 1

−2x −1 2 − 2l 0 0
−2y −1 0 2 − 2l 0
2z 1 0 0 2 + 2l









.

The sequence (36) consists of |H5|. A calculation shows that

|H5(λ1,x1)| = 128 − 64
√

2 ≈ 37.49

and
|H5(λ2,x2)| = 128 + 64

√
2 ≈ 218.51.

Since both numbers are positive, x1 and x2 are both local constrained
minima. But

f(x1) = 24 − 16
√

2

and
f(x2) = 24 + 16

√
2,

showing that x1 gives the global minimum. x1 is the point on the upper
part of C which is closest to the origin; x2 is the point on the lower part
which is closest. Since x1 is closer to the origin than x2, x1 must be the
global minimum. To see thatf does not have a maximum value on C , let x

be any number, let

y =
−2(x + 1)

(x + 2)

and let
z = x + y + 2.

Then (x, y, z) is on the plane z = x + y + 2. Also, z2 = x2 + y2, so (x, y, z)
is also on the cone. Therefore, (x, y, z) is on C for every x. In addition,
dist((x, y, z), 0)2 equals

x2 + y2 + z2 = 2(x2 + y2) = 2x2 + 8

(
x + 1

x + 2

)2

,

which gets arbitrarily large as x → ∞, showing that f has no constrained
global maximum.
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Problems for Section 16.

1. Find the constrained critical points for each of the following functions
with the given constraints.

a. f(x, y) = 5x + 2y, 5x2 + 2y2 = 14

b. f(x, y, z) = xyz, 2x + 3y + z = 6

c. f(x, y, z) = 2x + y2 − z2, x − 2y = 0, x + z = 0

2. For each function in 1, classify the constrained critical points using the
bordered Hessian and the second derivative test.
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17 Optimization with Inequality Constraints

Lagrange multipliers showed how to maximize or minimize a function
subject to some constraints, each of which was an equality. We will now
allow the constraints to be inequalities.

Example 1. Suppose we have $5 to spend on apples and bananas. If we
spend x on apples and y on bananas, our utility is

U(x, y) = xy(9− x − y).

The constraints are x ≥ 0, y ≥ 0 and x + y ≤ 5. The set of possible (x, y) is
a triangular region whose boundary has vertices (0, 0), (5, 0) and (0, 5). We
want to maximize our utility for (x, y) in this region. If the maximum
occurs in the interior of the region, it must occur at a critical point of
U(x, y). The equations Ux = Uy = 0 for a critical point are

Ux(x, y) = y(9 − x − y)− xy = 0,

Uy(x, y) = x(9 − x − y)− xy = 0.

The solutions to this system are (0, 0), (0, 9), (3, 3) and (9, 0). None of
these lies in the interior of the region, so we must check the triangular
boundary. Consider first the vertical line segment from (0, 0) to (0, 5). For
(0, y) on this line, U(0, y) = 0. Similarly, on the horizontal line segment
from (0, 0) to (5, 0), we have U(x, 0) = 0. On the line segment joining (5, 0)
and (0, 5), we have

U(x, y) = U(x, 5 − x) = x(5 − x)(9 − x − (5 − x)) = 20x − 4x2.

The quantity 20x − 4x2, where 0 ≤ x ≤ 5, has a maximum value at x = 2.5.
The maximum value of U(x, y) on this side of the triangle therefore occurs
at (2.5, 2.5), and U(2.5, 2.5) = 25. The maximum utility subject to the
constraints is obtained when we spend $2.5 on apples and $2.5 on bananas.
We could also have found the maximum of U(x, y) on each of the three line
segments by using Lagrange multipliers, since each of the line segments is
an equality constraint.

Example 2. The utility function is again U(x, y) = xy(9 − x− y). The
constraints are x ≥ 0, y ≥ 0 and x + y ≤ 8. The set of possible (x, y) is a
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triangular region whose boundary has vertices (0, 0), (8, 0) and (0, 8). The
critical point (3, 3) for U(x, y) now lies within the triangular region and
U(3, 3) = 27. On the line segment joining (8, 0) and (0, 8), the maximum
value of U(x, y) occurs at (4, 4), and U(4, 4) = 16. The maximum utility
therefore occurs at (x, y) = (3, 3).

Example 3. Let U(x, y) = 10 − x2 − y2 + 2y − 2x. The constraints are
x ≥ 0, y ≥ 0 and x + y ≤ 5, just as in Example 1. U(x, y) has the single
critical point (−1, 1), which does not lie within the triangular region. The
maximum utility therefore occurs on the boundary. On the vertical line
segment,

U(x, y) = U(0, y) = 10 − y2 + 2y, 0 ≤ y ≤ 5.

This has a maximum at y = 1, and U(0, 1) = 11. On the horizontal line
segment,

U(x, y) = U(x, 0) = 10 − x2 − 2x, 0 ≤ x ≤ 5.

This has a maximum at x = 0, and U(0, 0) = 10. On the line segment
joining (5, 0) and (0, 5), we have

U(x, y) = U(x, 5 − x) = −2x2 + 6x − 5, 0 ≤ x ≤ 5.

This has a maximum at x = 1.5, and U(1.5, 3.5) = −.5. The maximum
utility on the triangular region is therefore U(0, 1) = 11.

Example 4. In Example 1 of Section 15, suppose that P1 = 2 and P2 = 3.
The profit function is then

π(Q1, Q2) = 2Q1 + 3Q2 − 2Q2
1 − Q1Q2 − 2Q2

2.

We want to find the maximum value of π(Q1, Q2) on the region Q1 ≥ 0,
Q2 ≥ 0. If the the maximum occurs in the interior of the region, it must
occur at a critical point. The only critical point is (1

3
, 2

3
), and π(1

3
, 2

3
) = 4

3
.

Now we check the boundary. On the edge Q2 = 0, Q1 ≥ 0, we have
π(Q1, Q2) = 2Q1 − 2Q2

1. The maximum value of this function is π(1
2
, 0) = 1

2
.

On the edge Q1 = 0, Q2 ≥ 0, we have π(Q1, Q2) = 3Q2 − 2Q2
2. The

maximum value of this function is π(0, 3
4
) = 9

8
. Comparing the maximum

value in the interior with the maximum values on the edges, we see that the
maximum value of the profit is 4

3
at the critical point.
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Problems for Section 17.

1. Maximize f(x, y) = 2x − x2 − 4y − y2, subject to x ≥ 0, y ≥ 0.

2. Maximize f(x, y) = 2x − x2 − 4y − y2, subject to x ≥ 0, y ≥ 0,
3x + y ≤ 2.

3. Maximize f(x, y) = 2x− x2 + 5y − y2 − (x + y)2, subject to x ≥ 0, y ≥ 0.

4. In Example 2 of Section 15, the profit function is

π(Q1, Q2) = 5Q1 −
1

3
Q2

1 + 4Q2 −
1

2
Q2

2.

Maximize the profit, subject to Q1 ≥ 0, Q2 ≥ 0, Q1 + 2Q2 ≤ 16.
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18 Linear Programming

Linear programming is a technique for finding the maximum or minimum of
a linear function, called the objective function, which is subject to
various constraints, each of which is a linear inequality.

Example 1. Suppose that we want to maximize z = 3x + 5y, subject to
the following constraints:

x ≤ 4,

2y ≤ 12,

3x + 2y ≤ 18,

x ≥ 0, y ≥ 0.

This is an example of a linear programming problem. We first graph all the
inequalities so as to obtain a clear picture of the values (x, y) which are
permitted. The set of these permissible values is called the feasible region
and is denoted by R. We must locate the point (or points) (x, y) in R

which gives the largest value of z = 3x + 5y. Suppose we consider the line
10 = 3x + 5y. This line intersects R and any point on the line produces a
z-value of 10. We may slide the line up to the parallel line 20 = 3x + 5y,
which also intersects R, providing points with a z-value of 20. We can
continue to slide this line upward, producing parallel lines which intersect R

and provide even larger z-values. The largest z-value we obtain is on the
line 36 = 3x + 5y, which intersects R in the single point (2, 6) and produces
a z-value of 36. Note that this maximum occurs at what we could call a
”corner point” of R.

The simplex method is a general procedure for solving linear
programming problems. In Example 1, note that the region R is bounded
by several lines. These lines are called the constraint borders. The
points where these lines intersect are called the corner points. In the
example, the corner points are (0, 0), (4, 0), (4, 3), (2, 6) and (0, 6). The
simplex method tells us that the solution to the linear programming
problem will occur at a corner point. In some problems there will also be
solutions that are not at a corner point. To solve the linear programming
problem, simply check each of the corner points to see which one produces
the largest (or smallest) value of the objective function. In Example 1, the
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corner points produce the following z-values:

(0, 0) → 0, (4, 0) → 12, (4, 3) → 27, (2, 6) → 36, (0, 6) → 30.

We conclude that the maximum value of the objective function is 36.

Example 2. A company produces 2 products, denoted x and y. The
company charges 20 per unit for x and 15 per unit for y. The market is
large enough so that the company can sell all that it produces at these
prices. The production of each product requires 3 inputs, denoted a, b and
c. The company can buy at most 60 units of a, 24 of b and 84 of c. To
produce a single unit of x, the company needs 5 units of a, 3 of b and 12 of
c. To produce a single unit of y, the company needs 15 units of a, 4 of b

and 7 of c. The company wants to maximize the revenue it receives from
selling the two products. The linear programming problem can be stated as
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follows:

Maximize: z = 20x + 15y

Subject to: 5x + 15y ≤ 60,

3x + 4y ≤ 24,

12x + 7y ≤ 84,

x ≥ 0, y ≥ 0.

The five corner points of the feasible region produce the following z-values:

(0, 0) → 0, (7, 0) → 140, B = (6.22, 1.33) → 144.35, A = (4.8, 2.4) → 132, (0, 4) → 60.

The maximum possible revenue is therefore 144.35.
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Problems for Section 18.

1. Consider the following linear programming problem:

Maximize: z = 3x + 5y

subject to: x + 3y ≤ 15,

4x + 3y ≤ 24,

x ≥ 0, y ≥ 0.

a. Graph the feasible region.

b. Solve the problem.

2. A company produces 2 products, denoted P and Q. The company needs
4 inputs, denoted g, l, s and w to produce the products. The prices of
the inputs are: s is .15 per unit, l is .05 per unit, g is .50 per unit and w

is free. To produce one unit of P , the company needs 1 units of s, 2 of l,
and 1 of w. To produce one unit of Q, the company needs 2

3
unit of s, 3

of l and 1 of g. The amounts available for the company to use are 10
units of s, 30 of l and 20 of g. One unit of P sells for .4 dollars, and one
unit of Q sells for 1 dollar. Use the simplex method to answer the
following questions. How many units of each product should the
company make in order to maximize their profit? What is the
maximum profit?
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