FORMULA TABLE

SM275 Math for Economics, Fall Semester 2019-2020

1. Continuously compounded interest: The final amount A in an account is given by:

$$
A=A_{0} e^{r t}
$$

where A_{0} is the intial amount, r is the interest rate and t is the number of years.
2. The general solution of the first order linear DS: $A_{n+1}=s A_{n}+b$ is

$$
A_{n}=k s^{n}+\frac{b}{1-s}, \quad \text { if } \quad s \neq 1
$$

and

$$
A_{n}=k+n b, \quad \text { if } \quad s=1
$$

3. The general solution of the second order linear DS: $A_{n+2}=a A_{n+1}+b A_{n}+c$ is

$$
\begin{aligned}
& A_{n}=C_{1} r^{n}+C_{2} s^{n}+\frac{c}{1-a-b} \quad \text { if } \quad a+b \neq 1 \quad \text { and } \quad r \neq s \\
& A_{n}=\left(C_{1}+C_{2} n\right) r^{n}+\frac{c}{1-a-b} \quad \text { if } \quad a+b \neq 1 \quad \text { and } \quad r=s \\
& A_{n}=C_{1}(a-1)^{n}+C_{2}+\frac{c}{2-a} n \quad \text { if } \quad a+b=1 \quad \text { and } \quad a \neq 2 \\
& A_{n}=C_{1}+C_{2} n+\frac{c}{2} n^{2} \quad \text { if } \quad a+b=1, a=2 \quad \text { and } \quad b=-1
\end{aligned}
$$

where r and s are the roots of the characteristic equation $x^{2}=a x+b$.
4. A model for the National Economy is

$$
T_{n+2}=m(1+l) T_{n+1}-m l T_{n}+1
$$

where $T=$ total national income, $C=$ consumer expenditures, $I=$ private investment, and $G=$ government expenditures and

$$
\begin{gathered}
T_{n}=C_{n}+I_{n}+G_{n} \\
C_{n+1}=m T_{n}, m>0 \\
I_{n+1}=l\left(C_{n+1}-C_{n}\right), \quad l>0 \\
G_{n}=1
\end{gathered}
$$

The constant m is called the marginal propensity to consume (MPC) and the constant l is called the accelerator.
5. The Second Derivative Test - General Case: Suppose that P is a critical point of $f\left(x_{1}, \ldots, x_{n}\right)$. Recall that d_{k} is the determinant $\left|H_{k}\right|$, where H_{k} is the $k \times k$ submatrix in the upper left corner of the Hessian matrix of f at P.
Assume first that $d_{n} \neq 0$. Then
(a) If $d_{k}>0$ for $k=1,2, \ldots, n$, then f has a local minimum at P.
(b) If $d_{k}<0$ for k odd and $d_{k}>0$ for k even, then f has a local maximum at P.
(c) If neither (a) nor (b) holds, then f has a saddle point at P.

If $d_{n}=0$, then the test provides no information.
6. Second Derivative Test for Constrained Extrema: Suppose ($\lambda, \mathbf{x}_{\mathbf{0}}$) is a constrained critical point of $f\left(x_{1}, \ldots, x_{n}\right)$. Recall that d_{j} is the determinant $\left|H_{j}\right|$, where H_{j} is the $j \times j$ submatrix in the upper left corner of the bordered Hessian matrix $H_{L}\left(\lambda, \mathbf{x}_{\mathbf{0}}\right)$.
Calculate the following sequence of numbers:

$$
\left\{(-1)^{k} d_{2 k+1},(-1)^{k} d_{2 k+2}, \ldots,(-1)^{k} d_{k+n}\right\}
$$

Assume $d_{k+n} \neq 0$. Then
(a) If the sequence consists entirely of positive numbers, then f has a constrained local minimum at $\mathbf{x}_{\mathbf{0}}$.
(b) If the sequence in alternates as negative, positive, negative, ..., then f has a constrained local maximum at $\mathbf{x}_{\mathbf{0}}$.
(c) If neither case (a) nor case (b) holds, then f has a constrained saddle point at $\mathbf{x}_{\mathbf{0}}$.

If $d_{k+n}=0$, then the test fails.

