Example Student
Resubmission of Example Quiz 28 August 2019

Problem 1. I did not apply the chain rule correctly. I also used the wrong value for $\sin \left(\frac{\pi}{6}\right)$, which is $\frac{1}{2}$, not $\frac{\sqrt{3}}{2}$.

$$
\begin{aligned}
\frac{d}{d t} \sqrt{\sin \left(\frac{\pi}{6} e^{t}\right)} & =\frac{d}{d t}\left(\sin \left(\frac{\pi}{6} e^{t}\right)\right)^{\frac{1}{2}} \\
& =\frac{1}{2}\left(\sin \left(\frac{\pi}{6} e^{t}\right)\right)^{-\frac{1}{2}}\left(\frac{\pi}{6} e^{t} \cos \left(\frac{\pi}{6} e^{t}\right)\right) \\
& =\frac{\pi}{12} e^{t} \cos \left(\frac{\pi}{6} e^{t}\right)\left(\sin \left(\frac{\pi}{6} e^{t}\right)\right)^{-\frac{1}{2}}
\end{aligned}
$$

So, $\left.\quad \frac{d}{d t} \sqrt{\sin \left(\frac{\pi}{6} e^{t}\right)}\right|_{t=0}=\frac{\pi}{12} e^{0} \cos \left(\frac{\pi}{6} e^{0}\right)\left(\sin \left(\frac{\pi}{6} e^{0}\right)\right)^{-\frac{1}{2}}$

$$
\begin{aligned}
& =\frac{\pi}{12} \cos \left(\frac{\pi}{6}\right)\left(\sin \left(\frac{\pi}{6}\right)\right)^{-\frac{1}{2}} \\
& =\frac{\pi}{12}\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right)^{-\frac{1}{2}} \\
& =\frac{\pi}{24} \sqrt{\frac{3}{2}} \\
& =\frac{\pi}{4 \sqrt{6}}
\end{aligned}
$$

I pledge on my honor that I have not used any unauthorized materials, and that I have not given nor received any unauthorized assistance for this resubmission.

Example students

Example Quiz
Instructions. You have 5 minutes to complete this quiz. You may use your calculator. You may not use any other materials (e.g., notes, homework, books).

Problem	Weight	Score	
1	1	4	
Total		4	$/ 10$

Problem 1. Find $\frac{d}{d t} \sqrt{\sin \left(\frac{\pi}{6} e^{t}\right)}$ at $t=0$.

$$
\begin{aligned}
\frac{d}{d t} \sqrt{\sin \left(\frac{\pi}{6} e^{t}\right)} & =\frac{d}{d t}\left(\sin \left(\frac{\pi}{6} e^{t}\right)\right)^{\frac{1}{2}} \\
& =\frac{\frac{1}{2}\left(\sin \left(\frac{\pi}{6} e^{t}\right)\right)^{-\frac{1}{2}} \cdot \frac{\pi}{6} e^{t}}{x} \\
& =\frac{\pi}{12} e^{t}\left(\sin \left(\frac{\pi}{6} e^{t}\right)\right)^{-\frac{1}{2}}
\end{aligned}
$$

$$
\text { So, }\left.\frac{d}{d t} \sqrt{\sin \left(\frac{\pi}{6} e^{t}\right)}\right|_{t=0}=\frac{\pi}{12} e^{0}\left(\sin \left(\frac{\pi}{6} e^{0}\right)\right)^{-\frac{1}{2}}
$$

$$
=\frac{\pi}{12}\left(\sin \left(\frac{\pi}{6}\right)\right)^{-\frac{1}{2}}
$$

$$
=\frac{\pi}{12}\left(\frac{\sqrt{3}}{2}\right)_{x}^{-\frac{1}{2}}
$$

