Exam 3 - Information

1 Exam format

- When: Thursday 3 December in class
- How long: 50 minutes (1 period)
- What: Lessons 20-26
- One 3 in \times 5 in index card of handwritten notes (both sides) allowed
- You may use your calculator
- No other outside materials allowed

2 Schedule

Tuesday 1 December Double period class: Review and EI

Wednesday 2 December EI, 19:00-20:30, CH348

Thursday 3 December Single period class: Exam

3 Review Problems

This collection of problems is <u>not</u> meant to represent the length of the exam. You are responsible for <u>all</u> the material covered in Lessons 20-26, not just what is represented in the problems below.

Problem 1. Find the local optima of $f(x_1, x_2) = 8x_1^3 - 12x_1x_2 + x_2^3$.

Problem 2. Find the local optima of $f(x_1, x_2, x_3) = -x_1^4 - 2x_2^2 - x_3^2 + 4x_1x_2 + 2x_3$.

Problem 3. Is $f(x_1, x_2, x_3) = x_1^2 + 4x_2^2 + 2x_3^2 + x_1x_3 + x_2x_3 + 8$ strictly convex or strictly concave? Why? Suppose f(0, 0, 0) = 8 is a local minimum of f. Is f(0, 0, 0) = 8 also an absolute minimum? Why?

Problem 4. Find the local optima of $f(x_1, x_2) = -x_1^2 + x_2^2$ subject to the constraint $x_1^2 + 4x_2^2 = 4$.

Problem 5. Find the local optima of $f(x_1, x_2, x_3) = x_1x_2x_3$ subject to the constraint $x_1 + 2x_2 + 3x_3 = 6$.

Problem 6. Find the local optima of $f(x_1, x_2, x_3) = x_1$ subject to the constraints $x_1 - x_2^2 - 2x_3^2 = 0$ and $x_2^2 + x_3^2 = 1$.

Problem 7. Consider a firm that produces and sells two products. Below is a model that represents the firm's profit maximization problem.

• Variables:

 Q_1 = quantity of product 1 produced and sold P_1 = unit price of product 1

 Q_2 = quantity of product 2 produced and sold P_2 = unit price of product 2

• Model:

maximize
$$P_1Q_1 + P_2Q_2 - 12 - 4Q_1 - 8Q_2$$

subject to $P_1 = 46 - 3Q_1$
 $P_2 = 32 - 2Q_2$

- a. Describe the objective function and the constraints of the model. (e.g. What are the prices of the products? What are the costs of production? Do the prices depend on demand?)
- b. By substituting the constraints into the objective function, find the local maximum values of profit.
- c. Using the Lagrange multiplier method, find the local maximum values of profit.
- d. What do your answers from parts b and c tell you about what the firm should do?

Problem 8. Consider a firm that produces a good that requires two inputs to produce. In particular, x_1 units of input 1 and x_2 units of input 2 yield $3x_1^{1/3}x_2^{1/3}$ units of the good. Each unit of input 1 costs \$20, and each unit of input 2 costs \$160.

- a. Using the variables x_1 and x_2 defined above, write cost as a function of x_1 and x_2 : $c(x_1, x_2) = \dots$
- b. The firm needs to produce 24 units of the product. Using the variables x_1 and x_2 defined above, write an equality constraint that models this.
- c. Using the Lagrange multiplier method, find the local minimum values of cost.
- d. What does your answer from part c tell you about what the firm should do?