SM286A – Mathematics for Economics Fall 2015 Asst. Prof. Nelson Uhan

Lesson 4. Transposes and Inverses

1 The transpose of a matrix

- Let A be an $m \times n$ matrix
- The **transpose** of A is denoted by A'
	- \circ A' has dimension $n \times m$
	- \circ The columns of A are the rows of A'
	- \circ (The rows of A are the columns of A')

Example 1. Let $A = \begin{bmatrix} 3 & 8 & -9 \\ 1 & 0 & 4 \end{bmatrix}$ and $B =$ $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2$ 2 0 3 0 9 7 3 7 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ . Find A' and B' .

• A matrix *B* is **symmetric** if $B = B'$

○ What are some examples of symmetric matrices?

● Properties of transposes:

$$
\circ (A')' = A
$$

\n
$$
\circ (A + B)' = A' + B'
$$

\n
$$
\circ (AB)' = B'A'
$$

Example 2. Let $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 1 & 0 \\ 9 & 0 & 2 \end{bmatrix}$. Find $(AB)'$ and $B'A'$.

2 The inverse matrix

• Let's start with some motivation

Example 3. Solve for x: $ax = d (a \neq 0)$

• Recall from the homework that we can write the partial market equilibrium model

$$
Q_d = Q_s \t Q_d - Q_s = 0
$$

\n
$$
Q_d = a - bP \Leftrightarrow Q_d + bP = a
$$

\n
$$
Q_s = -c + dP \t Q_s - dP = -c
$$

using matrices as

$$
\left[\begin{array}{ccc} 1 & -1 & 0 \\ 1 & 0 & b \\ 0 & 1 & -d \end{array}\right] \left[\begin{array}{c} Q_d \\ Q_s \\ P \end{array}\right] = \left[\begin{array}{c} 0 \\ a \\ -c \end{array}\right]
$$

● It would be nice if we could write:

$$
Ax = d \qquad \Leftrightarrow \qquad A^{-1}Ax = A^{-1}d \qquad \Leftrightarrow \qquad x = A^{-1}d
$$

- Let *A* be a $n \times n$ (square) matrix
- The **inverse** of a matrix A is denoted by A^{-1}

$$
\circ A^{-1} \text{ is also } n \times n
$$

$$
\circ A^{-1} \text{ satisfies}
$$

- Properties of inverses:
	- \circ A^{-1} is defined only if A is square
	- \circ A^{-1} does not necessarily exist
		- ◇ A is **nonsingular** if it has an inverse (a.k.a. **invertible**)
		- ◇ A is **singular** if it has no inverse
	- \circ If A^{-1} exists, then A^{-1} is unique
	- \circ $AA^{-1} = I$ implies $A^{-1}A = I$ and vice-versa

Example 4. Let $A = \begin{bmatrix} 1 & 0 \\ 12 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 6 \\ 1 & 8 \end{bmatrix}$, and $C = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix}$. $\begin{bmatrix} 1 & 0 \\ -4 & 1/3 \end{bmatrix}$. Test whether any of these matrices is the inverse of another.

- \bullet More properties of inverses: (A and B are nonsingular and square)
	- $o (A^{-1})^{-1} = A$ $(A B)^{-1} = B^{-1} A^{-1}$ $O (A')^{-1} = (A^{-1})'$

Example 5. Verify that $(AB)^{-1} = B^{-1}A^{-1}$.

3 When is a matrix nonsingular? Linear dependence and independence

● A **linear combination** is a sum of scalar multiples of vectors, e.g.

for some vectors v_1, \ldots, v_n and scalars k_1, \ldots, k_n

- \bullet A set of vectors v_1, \ldots, v_n is **linearly dependent** if and only if any one of them can be expressed as a linear combination of the remaining vectors
- Otherwise, this set of vectors is **linearly independent**
- Special case: two vectors v_1 and v_2 are linearly dependent if and only if

Example 7. Are the vectors in Example 6 linearly dependent or linearly independent?

- Why do we care about linear dependence or independence?
- Consider the following system of linear equations

$$
10x_1 + 4x_2 = 8
$$

$$
5x_1 + 2x_2 = 2
$$

- $\bullet~$ We can rewrite the above system using matrices as
- If A were nonsingular (i.e. A^{-1} exists), then we could find a solution:
- But does the above system have a solution? Why?
- The lines have the same slope because

● Equivalently,

- In general: a square matrix is nonsingular if and only if its rows are linearly independent
	- Also: a square matrix is nonsingular if and only if its columns are linearly independent

Example 8. Show that $A =$ $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2$ 4 3 5 1 0 2 8 6 10 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ is singular.

Example 9. Show that $B =$ $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2$ $0 \t 2 \t -1$ −3 −9 3 7 5 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ is singular.

4 Next lesson...

● A systematic way of determining linear independence/dependence, nonsingularity, and solutions to systems of linear equations