SM286A – Mathematics for Economics Asst. Prof. Nelson Uhan

Lesson 4. Transposes and Inverses

1 The transpose of a matrix

- Let A be an $m \times n$ matrix
- The **transpose** of *A* is denoted by *A'*
 - A' has dimension $n \times m$
 - The columns of *A* are the rows of A'
 - (The rows of *A* are the columns of A')

Example 1. Let $A = \begin{bmatrix} 3 & 8 & -9 \\ 1 & 0 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 9 & 7 \\ 3 & 7 & 1 \end{bmatrix}$. Find A' and B'.

- A matrix *B* is **symmetric** if B = B'
 - What are some examples of symmetric matrices?

B'

• Properties of transposes:

•
$$(A')' = A$$

• $(A + B)' = A' +$
• $(AB)' = B'A'$

Example 2. Let $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 1 & 0 \\ 9 & 0 & 2 \end{bmatrix}$. Find (AB)' and B'A'.

2 The inverse matrix

• Let's start with some motivation

Example 3. Solve for x: ax = d ($a \neq 0$)

• Recall from the homework that we can write the partial market equilibrium model

$$Q_d = Q_s \qquad Q_d - Q_s = 0$$

$$Q_d = a - bP \iff Q_d + bP = a$$

$$Q_s = -c + dP \qquad Q_s - dP = -c$$

using matrices as

$$\underbrace{\begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & b \\ 0 & 1 & -d \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} Q_d \\ Q_s \\ P \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} 0 \\ a \\ -c \end{bmatrix}}_{d}$$

• It would be nice if we could write:

$$Ax = d \quad \Leftrightarrow \quad A^{-1}Ax = A^{-1}d \quad \Leftrightarrow \quad x = A^{-1}d$$

- Let *A* be a $n \times n$ (square) matrix
- The **inverse** of a matrix A is denoted by A^{-1}
 - $\circ A^{-1}$ is also $n \times n$
 - $\circ A^{-1}$ satisfies
- Properties of inverses:
 - A^{-1} is defined only if A is square
 - A^{-1} does not necessarily exist
 - ♦ *A* is **nonsingular** if it has an inverse (a.k.a. **invertible**)
 - ♦ *A* is **singular** if it has no inverse
 - If A^{-1} exists, then A^{-1} is unique
 - $AA^{-1} = I$ implies $A^{-1}A = I$ and vice-versa

Example 4. Let $A = \begin{bmatrix} 1 & 0 \\ 12 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 6 \\ 1 & 8 \end{bmatrix}$, and $C = \begin{bmatrix} 1 & 0 \\ -4 & 1/3 \end{bmatrix}$. Test whether any of these matrices is the inverse of another.

- More properties of inverses: (*A* and *B* are nonsingular and square)
 - $(A^{-1})^{-1} = A$ • $(AB)^{-1} = B^{-1}A^{-1}$ • $(A')^{-1} = (A^{-1})'$

Example 5. Verify that $(AB)^{-1} = B^{-1}A^{-1}$.

3 When is a matrix nonsingular? Linear dependence and independence

• A linear combination is a sum of scalar multiples of vectors, e.g.

for some vectors v_1, \ldots, v_n and scalars k_1, \ldots, k_n

- A set of vectors v_1, \ldots, v_n is **linearly dependent** if and only if any one of them can be expressed as a linear combination of the remaining vectors
- Otherwise, this set of vectors is linearly independent
- Special case: two vectors v_1 and v_2 are linearly dependent if and only if

Example 7. Are the vectors in Example 6 linearly dependent or linearly independent?

- Why do we care about linear dependence or independence?
- Consider the following system of linear equations

$$10x_1 + 4x_2 = 8$$

$$5x_1 + 2x_2 = 2$$

- We can rewrite the above system using matrices as
- If *A* were nonsingular (i.e. A^{-1} exists), then we could find a solution:
- But does the above system have a solution? Why?
- The lines have the same slope because

• Equivalently,

- In general: a square matrix is nonsingular if and only if its rows are linearly independent
 - Also: a square matrix is nonsingular if and only if its columns are linearly independent

Example 8. Show that $A = \begin{bmatrix} 4 & 3 & 5 \\ 1 & 0 & 2 \\ 8 & 6 & 10 \end{bmatrix}$ is singular.

Example 9. Show that $B = \begin{bmatrix} 0 & 2 & -1 \\ -3 & -9 & 3 \\ 7 & 5 & 1 \end{bmatrix}$ is singular.

4 Next lesson...

• A systematic way of determining linear independence/dependence, nonsingularity, and solutions to systems of linear equations