Lesson 17. Discrete Time and Difference Equations

0 Warm up

- Let's find a simple formula for the sum $S = 1 + \alpha + \alpha^2 + \dots + \alpha^{t-1}$, assuming $\alpha \neq 1$.
- First, $\alpha S =$
- Therefore, $S \alpha S = [1 \alpha)S$. Note that $S - \alpha S = (1 - \alpha)S$.
- Divide both sides of the above equation by (1α) to obtain another expression for *S*:

1 Overview

- Differential equations deal with dynamics in **continuous time**
 - e.g. P(t) is the price of a product at any real-valued time t: P(0), P(1.083), P(623.2), etc.
 - These dynamics are embodied in derivatives
- Sometimes it is more convenient to model dynamics in **discrete time**
 - e.g. price of a product at distinct time **periods**: every month, every year, etc.
 - These dynamics are described by differences

2 Difference equations

- We want to study how a sequence of values y_0, y_1, y_2, \ldots changes over time
- A difference equation expresses a value of a sequence as a function of other terms in the sequence
- Examples:

$$y_{t+1} = y_t + 2$$
 $y_{t+1} = 0.9y_t$

- The **first difference** of *y* at period *t* is $\Delta y_t = y_{t+1} y_t$
- We can rewrite the difference equations above as:
- We will concentrate on **first-order** difference equations: equations with only first differences, or oneperiod time lags (i.e. *y_t* and *y_{t+1}*)
- The solution of a difference equation is a formula defining the values of y_t in every time period t

3 Solving first-order difference equations by iteration

- First, a naïve approach
- Start with y_1 , then find y_2, y_3, \ldots using the difference equation
- Infer a pattern to get a formula for y_t for any period t

Example 1. Solve the difference equation $y_{t+1} = y_t + 2$, assuming an initial value $y_0 = 15$. Verify your answer.

Example 2. Solve the difference equation $y_{t+1} = 0.9y_t$, assuming an initial value $y_0 = 4$. Verify your answer.

4 A general method for solving first-order difference equations

Given
$$y_{t+1} + ay_t = c$$
, what is y_t ?

• By iteration, we obtain

$$y_{1} = -ay_{0} + c$$

$$y_{2} = -ay_{1} + c = -a(-ay_{0} + c) + c = (-a)^{2}y_{0} + (1 - a)c$$

$$y_{3} = -ay_{2} + c = -a((-a)^{2}y_{0} + (1 - a)c) + c = (-a)^{3}y_{0} + (1 + (-a) + (-a)^{2})c$$

$$\vdots$$

$$y_{t} = (-a)^{t}y_{0} + (1 + (-a) + (-a)^{t} + \dots + (-a)^{t-1})c$$

- If a = -1, then the solution is
- If $a \neq -1$, then the solution is

or equivalently

Example 3. Solve the difference equation $y_{t+1} - 5y_t = 1$, assuming $y_0 = 7/4$. Verify your answer.