SM286A – Mathematics for Economics Asst. Prof. Nelson Uhan

Lesson 21. Optimization of Functions of *n* Variables

0 Warm up

Example 1. Find the local optima of $f(x, y) = 12x + 18y - 2x^2 - xy - 2y^2$.

1 An economic application: profit maximization for a multiproduct firm

- There are many applications of optimization to economics
- A classic example: profit maximization
- Consider a firm that produces and sells two products
- Prices of these products are exogenously determined
- Variables:

R = revenue	Q_1 = quantity of product 1 produced
$C = \cos t$	Q_2 = quantity of product 2 produced

• Model:

maximize
$$R - C$$

subject to $R = 12Q_1 + 18Q_2$
 $C = 2Q_1^2 + Q_1Q_2 + 2Q_2^2$

• The unit price of product 1 is

- The marginal cost of product 1 is
- The marginal cost of product 2 is
- The production costs of the two products are related to each other!
- We can write profit as a function of *Q*₁ and *Q*₂:
- We want to maximize profit π we already did this in Example 1!

$$f \leftrightarrow \pi$$
 $x \leftrightarrow Q_1$ $y \leftrightarrow Q_2$

- Locally optimal production plan and profit:
- Looking ahead:
 - How do we know if the local maximum we found is an **absolute maximum**?
 - What if we have 3 products? 100 products? *n* products?

2 The gradient and the first-order necessary condition

- Let *f* be a function of *n* variables
- Let's call these variables x_1, x_2, \ldots, x_n
- $f(a_1, a_2, \ldots, a_n)$ is a **local minimum** of f if

 $f(a_1, a_2, ..., a_n) \le f(x_1, x_2, ..., x_n)$ for all $(x_1, x_2, ..., x_n)$ "near" $(a_1, a_2, ..., a_n)$

• $f(a_1, a_2, \ldots, a_n)$ is a local maximum of f if

 $f(a_1, a_2, ..., a_n) \ge f(x_1, x_2, ..., x_n)$ for all $(x_1, x_2, ..., x_n)$ "near" $(a_1, a_2, ..., a_n)$

- Let's assume that all the first and second partial derivatives always exist
- The **gradient** of *f* is the vector

- In words, $\frac{\partial f}{\partial x_i}(a_1, a_2, \dots, a_n)$ is
- Intuitively, the rate of change at a local minimum or local maximum should be zero in all directions
- First-order necessary condition. If $(a_1, a_2, ..., a_n)$ is a local minimum or local maximum of f, then $\nabla f(a_1, a_2, ..., a_n) = 0$, or equivalently

$$\frac{\partial f}{\partial x_1}(a_1,\ldots,a_n)=0 \qquad \frac{\partial f}{\partial x_2}(a_1,\ldots,a_n)=0 \qquad \cdots \qquad \frac{\partial f}{\partial x_n}(a_1,\ldots,a_n)=0$$

- The points that satisfy the first-order necessary condition are called critical points
- Note that this is just a more general version of what we had for functions with 1 or 2 variables

Example 2. Find the critical points of $f(x_1, x_2, x_3) = e^{2x_1} + e^{-x_2} + e^{x_3^2} - 2x_1 - 2e^{x_3} + x_2$.

3 The Hessian and the second-order sufficient condition

- How do we know if a critical point is a local minimum or a local maximum?
- We need a "second derivative test" for *n* variables
- The **Hessian matrix** of *f* is

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

Example 3. Find the Hessian matrix of $f(x_1, x_2, x_3) = e^{2x_1} + e^{-x_2} + e^{x_3^2} - 2x_1 - 2e^{x_3} + x_2$. Recall from Example 2 that

$$\frac{\partial f}{\partial x_1} = 2e^{2x_1} - 2 \qquad \qquad \frac{\partial f}{\partial x_2} = -e^{-x_2} + 1 \qquad \qquad \frac{\partial f}{\partial x_3} = 2x_3e^{x_3^2} - 2e^{x_3}$$

• The *i*th leading principal minor of H – denoted by $|H_i|$ – is the determinant of the square submatrix formed by the first *i* rows and columns of H

Example 4. Find all of the leading principal minors of *H* from Example 3 at $(x_1, x_2, x_3) = (0, 0, 1)$, the critical point of *f* found in Example 2.

- Second-order sufficient condition. If $(a_1, a_2, ..., a_n)$ satisfies the first-order necessary condition, then
 - (i) $f(a_1, a_2, ..., a_n)$ is a local minimum if all the leading principal minors of *H* are positive, i.e.

$$|H_1| > 0$$
 $|H_2| > 0$... $|H_n| > 0$

(ii) $f(a_1, a_2, ..., a_n)$ is a local maximum if the first leading principal minor is negative, and the remaining leading principal minors alternate in sign, i.e.

$$|H_1| < 0 \quad |H_2| > 0 \quad |H_3| < 0 \quad \text{etc.}$$

Example 5. Is $(x_1, x_2, x_3) = (0, 0, 1)$, the critical point of *f* found in Example 2, a local minimum or a local maximum?

• Note that the second-order sufficient condition is just a more general version of the second derivative test we had for functions with 1 or 2 variables

• For a function $f(x)$ with 1 variable, the	Hessian is		and so
(i) "all the leading principal minors of(ii) "the first leading principal minor is	f <i>H</i> are positive" n negative, and the	neans remaining leading p	principal minors alternate
in sign" means			
• For a function $f(x, y)$ with 2 variables,	the Hessian is		

and so

(i) "all the leading principal minors of *H* are positive" means

(ii) "the first leading principal minor is negative, and the remaining leading principal minors alternate in sign" means