SM286A – Mathematics for Economics Asst. Prof. Nelson Uhan

Lesson 23. Profit Maximization

1 Incorporating demand into profit maximization

- Consider a firm that produces and sells three products
- The demand for these products depends on the prices of the products
- Variables:

R = revenue Q_1 = quantity of product 1 produced and sold P_1 = unit price of product 1C = cost Q_2 = quantity of product 2 produced and sold P_2 = unit price of product 2

• Model:

maximize
$$R - C$$

subject to $R = P_1Q_1 + P_2Q_2 + P_3Q_3$
 $C = 20 + 15(Q_1 + Q_2 + Q_3)$
 $P_1 = 63 - 4Q_1$
 $P_2 = 105 - 5Q_2$
 $P_3 = 75 - 6Q_3$

- Let's determine what the firm needs to produce and sell in order to maximize profit
- First, let's simplify the model
- We can express *R* as a function of Q_1 , Q_2 , Q_3 by substitution:
- Next, we can express profit π as a function of Q_1, Q_2, Q_3 by substitution as well:

• Now, let's maximize π

Step 1. Find the critical points

- The gradient of π is
- The first-order necessary condition tells us that critical points of π must satisfy

• Therefore, we have one critical point of π :

Step 2. Classify each critical point as a local minimum, local maximum, or saddle point

- The Hessian matrix of π is
- The Hessian matrix of π at the critical point $(Q_1, Q_2, Q_3) = (6, 9, 5)$ is

• The leading principal minors of the Hessian at $(Q_1, Q_2, Q_3) = (6, 9, 5)$ are

• Therefore, the second-order sufficient condition tells us that

Step 3. Is the function strictly concave or convex?

- The leading principal minors of the Hessian for any possible values of (Q_1, Q_2, Q_3) are • Therefore, π is • In addition, it follows that $\pi(6, 9, 5) = 679$ is 2 Determining amounts of capital and labor to maximize profit • Suppose that a firm's production is a function of capital and labor • Variables: R = revenueQ = quantity produced C = costK = quantity of capital input L = quantity of labor input • Model: maximize R - Csubject to R = 9QC = 3K + 3L $Q = K^{1/3} L^{1/3}$ (Cobb-Douglas production function) K, L > 0(restrict capital and labor to positive values)
 - Let's determine the capital and labor needed to maximize profit
 - First, let's simplify the model by substitution, we can write profit as a function of capital and labor:

Step 1. Find the critical points

- The gradient of π is:
- The first-order necessary condition tells us that critical points of π must satisfy:

• Therefore, we have one critical point of π :

Step 2. Classify each critical point as a local minimum, local maximum, or saddle point

- The Hessian matrix of π is
- The Hessian matrix of π at the critical point (K, L) = (1, 1) is
- The leading principal minors of the Hessian at (K, L) = (1, 1) are
- Therefore, the second-order sufficient condition tells us that

Step 3. Is the function strictly concave or convex?

• The leading principal minors of the Hessian for any possible values of (K, L) are

• Therefore, π is	
• In addition, it follows that $\pi(1,1) = 3$ is	