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Lesson 24. Optimization with Equality Constraints

1 �e e�ect of a constraint

● Let’s model a consumer whose utility depends on his or her consumption of two products

● De�ne the following variables:

x1 = units of product 1 consumed x2 = units of product 2 consumed

● �e consumer’s utility function is

U(x1, x2) = 4x1/21 + 8x1/22

● Without any additional information, the consumer can maximize his or her utility by

● To make this model more realistic, we should take into account the consumer’s budget

● Suppose the unit prices of products 1 and 2 are $2 and $4 respectively

● In addition, suppose the consumer intends to spend $6 on the two products

● �e consumer’s budget constraint can be expressed as

● Putting this all together, we obtain the following optimization model:

maximize 4x1/21 + 8x1/22

subject to 2x1 + 4x2 = 6

● We have seen models like this before, with an objective function to be maximized/minimized, and

equality constraints de�ning relationships between the variables — e.g. pro�t maximization

● Sometimes we can solve these models by �rst substituting the equality constraint into the objective

function, and then �nding the minimum/maximum of the resulting objective function

● �is isn’t always possible, especially when the equality constraint is complex

● Instead, we can use the method of Lagrange multipliers
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2 �e Lagrange multiplier method – 1 equality constraint

minimize/maximize f (x1, . . . , xn)
subject to g(x1, . . . , xn) = c

● Step 1. Introduce the Lagrange multiplier λ and form the Lagrangian function Z:

Z(x1, . . . , xn , λ) = f (x1, . . . , xn) + λ[c − g(x1, . . . , xn)]

● Step 2. Find the critical points by solving the system of equations implied by the �rst-order necessary

condition:

∇Z(x1, . . . , xn , λ) = 0 or equivalently

∂Z
∂x1

(x1, . . . , xn , λ) = 0

⋮
∂Z
∂xn

(x1, . . . , xn , λ) = 0

∂Z
∂λ

(x1, . . . , xn , λ) = 0

● Step 3. Classify each critical point as a local minimum or local maximum by applying the second-order

su�cient condition:

○ �e bordered Hessian matrix H is

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
∂g
∂x1

∂g
∂x2 . . .

∂g
∂xn

∂g
∂x1

∂2Z
∂x2

1

∂2Z
∂x1x2 . . . ∂2Z

∂x1∂xn
∂g
∂x2

∂2Z
∂x2∂x1

∂2Z
∂x2
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. . . ∂2Z
∂x2∂xn

⋮ ⋮ ⋮ ⋱ ⋮
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

○ �e ith bordered leading principal minor of H — denoted by ∣H i ∣— is the determinant of the

square submatrix formed by the �rst i + 1 rows and columns of H

○ Let (a1, . . . , an) be a critical point found in Step 2. �en

(i) f (a1, a2, . . . , an) is a local minimum if

∣H2∣ < 0 ∣H3∣ < 0 ⋯ ∣Hn∣ < 0

(ii) f (a1, a2, . . . , an) is a local maximum if

∣H2∣ > 0 ∣H3∣ < 0 ∣H4∣ > 0 etc.
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Example 1. Use the Lagrange multiplier method to �nd the local optima of

minimize/maximize 4x1/21 + 8x1/22

subject to 2x1 + 4x2 = 6

Step 1. Introduce the Lagrange multiplier λ and form the Lagrangian function Z.

● �e Lagrangian function Z is

Step 2. Find the critical points.

● �e gradient of Z is

● �e �rst-order necessary condition tells us that the critical points must satisfy

● �erefore, we have one critical point:

Step 3. Classify the critical points as a local minimum or local maximum.

● �e bordered Hessian is
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● �e bordered Hessian at the critical point (x1, x2, λ) = (1, 1, 1) is

● �e bordered leading principal minors ∣H2∣, ∣H3∣, . . . are

● �erefore,

Example 2. Use the Lagrange multiplier method to �nd the local optima of

minimize/maximize x21 + x22 + x23
subject to 2x1 + x2 + 4x3 = 168

(next page for more space)
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3 What’s up with λ?

● Consider the optimization problem in Example 2:

minimize/maximize x21 + x22 + x23
subject to 2x1 + x2 + 4x3 = 168

● Using the �rst-order necessary condition, we found one critical point at (x1, x2, x3, λ) = (16, 8, 32, 16)
● Using the second-order su�cient condition, we found that f (16, 8, 32) = 1344 is a local minimum

● If we change the problemby increasing the constraint RHS, does the localminimum increase or decrease?

○ �is is known as sensitivity analysis –howdoes your optimal solution changewhen the parameters

of your optimization problem change?

○ e.g. What happens if we have a larger budget? Larger production quota?

● It turns out that λ is the rate of change in the optimal value with respect to the constraint RHS

● So for the problem in Example 2, increasing the constraint RHS

● More generally:

○ Consider the generic optimization problem with 1 equality constraint:

minimize/maximize f (x1, . . . , xn)
subject to g(x1, . . . , xn) = c

○ Let (x∗1 , . . . , x∗n , λ∗) be a critical point
○ Suppose f (x∗1 , . . . , x∗n) is a local optimum

○ �en λ∗ is the rate of change of this local optimum with respect to c
○ λ∗ is known as themarginal cost or shadow price of the constraint
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