SM286A SYLLABUS FALL 2015

Text: Fundamental Methods of Mathematical Economics (4th ed.) – Chiang and Wainwright

Lesson	Day	Date	Section	Problems
	,			
1	М	8/24	3.1: The meaning of equilibrium	3.2: 1-5
		,	3.2: Partial market equilibrium-a linear model	
2	W	8/26	3.3: Partial market equilibrium-a nonlinear	3.3: 2,4,6
		,	model	, ,
3	F	8/28	4.1: Matrices and vectors	4.1: 1
			4.2: Matrix operations	4.2: 1-5,6be
4	М	8/31	4.3: Notes on vector operations	4.3: 1acd,
5	W	9/2	4.4: Commutative, associative and distributive	4.4: 1a,3,5a
			laws	4.5: 1,2,3ab
			4.5: Identity matrices and null matrices	4.6: 1,2,4
			4.6: Transposes and inverses	
6	F	9/4	Review	
7	Т	9/8	5.1: Conditions of nonsingularity of a matrix	5.1: 3,4,5ac
			RREF handout	RREF:
8	W	9/9	RREF handout	RREF:
9	F	9/11	5.2: Test of nonsingularity by use of	5.2: 1ace,2,3,4a
			determinant	5.3: 1,3,4ab
			5.3: Basic properties of determinants	
10	М	9/14	5.4: Finding the inverse matrix	5.4: 2ac,4ac,6a,7
			5.5: Cramer's rule	5.5: 1ab,2ab
11	W	9/16	5.6 (pp.107-108): Market model, national-	5.6: 1
			income model	
12	F	9/18	5.7: Leontief input-output models	5.7: 1-4
13	М	9/21	Review	
14	W	9/23	Review	
15	F	9/25	Test 1	
16	М	9/28	15.1: First order linear DE with constant	15.1: 1ac,2ac,3a,4a
			coefficients	
17	W	9/30	15.2: Dynamics of market price	15.2: 1,3,4
18	F	10/2	15.3: Variable coefficients	15.3: 1-4
19	М	10/5	15.4: Exact DE	15.4: 1ab,2
20	W	10/7	15.5: Nonlinear DE of 1st order and 1st	15.5: 1-3
			degree	
21	F	10/9	15.6: The qualitative-graphic approach	15.6: 1ac,2,3
22	W	10/14	15.7: Solow growth model	15.7: handout
23	F	10/16	Review	
24	М	10/19	17.1: Discrete time, differences and difference	17.2: 1-4

			equations	
			17.2: Solving a 1st order difference equation	
25	W	10/21	17.3: The dynamic stability of equilibrium	17.3: 1ab,2a,3a
26	F	10/23	17.4: The cobweb model	17.4: 2,3
27	М	10/26	Review	
28	W	10/28	Test 2	
29	F	10/30	11.6: Motivating examples :	11.2: 1,2
			11.2: Extreme values of a function of two	
			variables	
30	М	11/2	11.3: Determinant review	11.3: 1ac,2c
			Quadratic forms, positive/negative	
			definiteness	
31	W	11/4	11.3: Second-order conditions, the Hessian	11.3: 3ac,4abe,5abe
32	F	11/6	11.4: Generalization to n variables	11.4: 1-4,5a
33	М	11/9	11.5: Convex and concave functions	11.5: 1-6
			Convex sets	
34	F	11/13	11.6: Solving the motivating examples	11.6: 1-3
35	М	11/16	Review	
36	W	11/18	12.1: Effects of a constraint	
			12.2: Solving by substitution	
37	F	11/20	12.2: Lagrange multiplier method	12.2: 1-3
			Shadow price interpretation of Lagrange	
			multiplier	
38	М	11/23	12.3: Second-order conditions, the bordered	12.3: 1
			Hessian	
39	W	11/25	12.3: Generalizations: n variables and 1	
			equality constraint, n variables and m equality	
			constraints	
40	М	11/30	12.5: Utility maximization	12.5: handout
			12.7: Least-cost combination of inputs	12.7: handout
41	W	12/2	Review	
42	F	12/4	Review	
43	М	12/7	Test 3	
44	W	12/9	Review	

Student Learning Outcomes: Learning Goals and Objectives for Mathematics for Economics (SM286A):

Upon successful completion of this course, students are able to do the following:

- 1. Perform basic operations with matrices.
- 2. Solve simple equilibrium models in economics using matrix methods.
- 3. Apply the theory of first order differential equations and difference equations to analyze growth models in economics.
- 4. Apply the theory of constrained optimization to problems involving utility maximization or least-cost combination of inputs.